

--..- ------ ----- ------ -. ---- -- -----------_. - Virtual Machine/
System Product

eMS User's Guide

Release 3

Third Edition (September 1983)

This edition, SCI9-6210-2, is a major revision of SCI9-621O-1, and applies to Release 3
of the IBM Virtual Machine/System Product, (VM/SP), program number 5664-167, and
to all subsequent releases and modifications until otherwise indicated in new editions or
Technical Newsletters. Changes are periodically made to the information contained
herein; before using this publication in connection with the operation of IBM systems,
consult the IBM System/370 and 4300 Processors Bibliography, GC20-0001, for the
editions that are applicable and current.

Summary of Changes

For a list of changes, see page iii.

Changes or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program products may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming
Publications, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or
distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983

Summary of Changes

Summary of Changes
for SC19-6210-2
for VM/SP Release 3

Reorganization of this manUilI

• "Part 1. Understanding CMS" contains a new chapter about
communicating with other computer users. Documentation on the CMS
editor has been moved to "Appendix A." "Chapter 4. What You Can Do
with CMS Commands" provides an overview of the operations that you
might need to perform and the commands that you can use to perform
these operations.

• The chapters in "Part 2. Program Development Using CMS" appear in a
new order within the part.

• "Part 3: Learning to Use EXECs" contains overviews of the three EXEC
interpreters. Documentation concerning the CMS EXEC Facility is now in
"Appendix B."

• The chapters in "Part 4. The HELP Facility" have been condensed to two
chapters.

New Commtllllis for ReletlSe 3 of VM/SP
The following CMS commands are new for this release.

CATCHECK - Allows CMS VSAM users to invoke the VSE/VSAM Catalog
Check Service Aid to verify a complete catalog structure.

EXECOS - Resets the OS and VSAM environments under CMS without
returning to the interactive environment.

EXECUPDT - Used to apply updates to a System Product interpreter source
program and create an executable version of the program.

IMMCMD - Establishes or cancels Immediate commands from within an
EXEC.

RESERVE - Allocates all available blocks of a 512-, lK-, 2K-, or 4K-byte
block formatted minidisk to a unique CMS file.

New Immediate Commtllllis

HI - Halt interpretation terminates execution of all currently executing System
Product interpreter or EXEC 2 EXECs without destroying the environment as
HX would.

TE - Trace end stops all tracing of your System Product interpreter or EXEC 2
programs or macros.

TS - Trace Start starts tracing your System Product interpreter or EXEC 2
programs or macros.

SunUnary of Changes iii

iv VM/SP eMS User's Guide

New CMS Function

DISKID - Obtains information on the physical organization of RESERVEd
minidisk.

New CMS Macro Instructions

ABNEXIT - Sets or clears ABEND exit routines.
IMMCMD - Delcares, clears, or queries Immediate commands.
WAITECB - Waits on an Event control block (ECB) or a list of ECBs.

New CP Command

PER - Monitor certain events in the user's virtual machine as they occur during
program execution.

The System Product Interpreter
"Part 3. Learning to Use EXECs" describes the System Product interpreter and
provides examples of writing programs in the Restructured Extended Executor
(REXX) language used with the System Product interpreter.

The XEDIT PF Keys
Document changes to the XEDIT PF Keys in HELP files and in other files.

512-byte blocksiu
Document support of the 512-byte blocksize for CMS formatted minidisks.

Miscellaneous
This major revision incorporates minor technical and editorial changes.

Summary of Changes
for SC19-6210-1
for VM/SP Release 2

New:
Document changes due to the restructuring of the CMS nucleus.

Support of IOCP and the enhanced ASCII is included.

The following commands and functions are new for Release 2: CMDCALL,
DEFAULTS, EXECIO, FILELIST, GLOBALV, IDENTIFY, NAMEFIND,
NAMES, NOTE, NUCXDROP, NUCXLOAD, NUCXMAP, PEEK, RDR,
RDRLIST, READ CARD , RECEIVE, SENDFILE, TELL, and NUCEXT.
These commands are documented in the VM / SP CMS Command and Macro
Reference.

Changed:
This major revision incorporates minor technical and editorial changes.

Preface

This pUblication is intended for the general CMS user. It contains information
describing the interactive facilities of CMS, and includes examples showing you
how to use CMS.

This pUblication contains four parts, plus appendixes.

"Part 1: Understanding CMS" contains sections that describe, in general terms, the
CMS facilities and the CMS and CP commands that you can use to control your
virtual machine. If you are an experienced programmer who has used interactive
terminal systems before, you may be able to refer directly to the VM / SP CMS
Command and Macro Reference to find specific details about CMS commands that
are summarized in this part. Otherwise, you may need to refer to later sections 'of
this publication to gain a broader~ background in using CMS.

The topics discussed in Part 1 are:

• Getting Acquainted with VM/SP
• VM/SP-CMS Environments and Mode Switching
• The CMS File System
• What You Can Do with CMS Commands
• Editing Your Files
• Using Real Printers, Punches, Readers and Tapes
• Communicating with Other Computer Users

"Part 2: Program Development Using CMS" is primarily for applications
programmers who want to use CMS to develop and test OS and VSE programs
under CMS.

The topics discussed in Part 2 are:

• Programming for the CMS Environment
• Developing OS Programs Under CMS

Developing VSE Programs Under CMS
Using Access Method Services and VSAM Under CMS and CMS/DOS

• Using the CMS Batch Facility
• Debugging Your Programs

"Part 3: Learning To Use EXECs" gives detailed information on creating EXEC
procedures to use with CMS.

The topics discussed in Part 3 are:

• Introduction to the EXEC Processors
• Creating System Product Interpreter EXECs
• Creating a PROFILE EXEC
• Exchanging Data Between Programs Through the Stack
• CMS Commands Used With System Product Interpreter EXECs

"Part 4: The HELP Facility" contains descriptions and examples of the use of
HELP facility format words in creating HELP description files.

Using the HELP Facility
Tailoring the HELP Facility

Preface v

Terminology

vi VM/SP eMS User's Guide

"Appendix A: Using the CMS Editor"

"Appendix B: Using the CMS EXEC Facility"

"Appendix C: Considerations for Line-mode Terminals" discusses aspects of
VM/SP and CMS that are different or unique when you use these terminals.

"Appendix D: Summary of CMS Commands" lists the commands available in the
CMS command environment.

"Appendix E: Summary of CP Commands" describes the CP command privilege
classes and summarizes the commands available in the CP command environment.

"Appendix F: Sample Terminal Sessions."

"Glossary" lists and defines terms that are used in this manual.

Some of the following terms are used, for convenience, throughout this publication:

• The term "CMS/DOS" refers to the functions of CMS that become available
when you issue the command

set dos on

CMS/DOS is a part of the normal CMS system, and is not a separate system.
Users who do not use CMS/DOS are sometimes referred to as OS users, since
they use the OS simulation functions of CMS.

The term "CMS files" refers exclusively to files that are in the fixed block
format used by CMS file system commands. VSAM and OS data sets and VSE
files are not compatible with the CMS file format, and cannot be manipulated
using CMS file system commands.

• The terms "disk" and "virtual disk" are used interchangeably to indicate disks
that are in your CMS virtual machine configuration. Where necessary, a
distinction is made between CMS-formatted disks and disks in OS or VSE
format.

• The term "3270" refers to a series of display devices, namely, the mM 3275,
3276 Controller Display Station, and 3277, 3278, and 3279 Display Stations.
A specific device type is used only when a distinction is required between
device types.

Information about display terminal usage also applies to the mM 3138, 3148, and
3158 Display Consoles when used in display mode, unless otherwise noted.

Any information pertaining to the IBM 3284 or 3286 Printer also pertains to the
mM 3287, 3288, and 3289 printers, unless otherwise noted.

• The term "3330" refers to the IBM 3330 Disk Storage Models 1, 2, and 11,
the IBM 3333 Disk Storage and Control Models 1 and 11, and the mM 3350
Direct Access Storage in 3330 compatibility mode.

• The term "2305" refers to the IBM 2305 Fixed Head Storage, Models 1 and 2.

Prerequisite Publications

Corequisite Publications

• The term "3340" refers to the IBM 3340 Direct Access Storage Facility and
the IBM 3344 Direct Access Storage.

• The term "3350" refers to the IBM 3350 Direct Access Storage device when
used in native mode.

• Any information pertaining to the mM 2741 terminal also applies to the mM
3767 terminal, unless otherwise noted.

• The term "370x" refers to the 3704/3705 Communications Controllers.

• The term "3370" refers to the IBM 3370 Direct Access Storage Device.

• The term "3310" refers to the mM 3310 Direct Access Storage Device.

• The term "FB-512" refers to the mM 3370 and 3310 Direct Access Storage
Devices.

For a glossary of VM/SP terms, see the Virtual Machine/System Product Library
Guide and Master Index, GC19-6207.

SCRIPT /VS is a component of the IBM Document Composition Facility program
product, which is available from IBM for a license fee. For additional information
on SCRIPT /VS usage, see Document Composition Facility: User's Guide,
SH20-9161.

Virtual Machine/System Product:

Introduction, GC 19-6200

Terminal Reference, GC 19-6206

A new user of CMS might refer to the VM / SP: CMS Primer, SC24-5236, for
introductory tutorial information on using CMS.

Virtual Machine/System Product:

CMS Command and Macro Reference, SC19-6209

CP Command Reference for General Users, SC 19-6211

EXEC 2 Reference, SC24-5219

Operating Systems in a Virtual Machine, GC19-6212

System Messages and Codes, SC19-6204

System Product Editor Command and Macro Reference, SC24-5221

System Product Editor User's Guide, SC24-5220

System Product Interpreter Reference, SC24-5239

Preface vii

Quick References

System Product Interpreter User's Guide, SC24-5238

There are publications available as quick reference material when you use VM/SP
and CMS. They are:

Virtual Machine/System Product,'

Commands (General User), SX20-4401

Commands (Other than General User), SX20-4402

EXEC 2 Language, SX24-5124

Quick Guide for Users, SX20-4400

SP Editor Command Language, SX24-5122

System Product Interpreter Reference Summary, SX20-5126

Related VM/SP Publications

Additional descriptions of various CMS functions and commands that are normally
used by system support personnel are described in the following publications:

Virtual Machine/System Product:

Installation Guide, SC24-5237

Operator's Guide, SC 19-6202

Planning Guide and Reference, SC 19-6201

System Programmer's Guide, SC19-6203

Information describing the CMS command CPEREP, a command used to generate
output reports from VM/SP's error recording records, is contained in the Virtual
Machine/System Product OLTSEP and Error Recording Guide, SC19-6205

Details on the use of OS/VS EREP operands, required to make use of CPEREP,
are contained in the OS/VS, DOS/VSE, VM/370 Environmental Recording,
Editing, and Printing Program, GC28-0772.

IPCS CMS commands are described in IBM Virtual Machine Facility/3 70:
Interactive Problem Control System (IPCS) User's Guide, GC20-1823, and not in
this publication.

Related Publications for os Users

viii VM/SP eMS User's Guide

For information on OS/VS tape label processing, discussed with "Label Processing
in OS Simulation" in this publication, refer to:

OS/VSl Data Management Services Guide, GC26-3874

OS/VS2 Data Management Services Guide, GC26-3875

OS/VS2 Data Management Services Guide, GC26-387S

OS/VS Tape Labels, GC26-379S

Information on the linkage editor is contained in OS / VS Linkage Editor and
Loader, GC26-3813.

Related Publications for VSAM and Acceu Method Services Users

CMS support of Access Method Services is based on VSE and VSE/VSAM. The
control statements that you can use are described in Using VSE/VSAM Command
and Macros, SC24-S144.

Error messages produced by the Access Method Services program, and return
codes and reason codes, are listed in VSE/VSAM Messages and Codes, SC24-S146.

For a detailed description of VSE!VSAM macros and macro parameters, refer to
the VSE/AF Macro User's Guide, SC24-S210

For information on OS/VS VSAM macros, refer to OS/VS Virtual Storage Access
Method (VSAM) Programmer's Guide, GC26-3818.

Information on formatting virtual minidisks using the Device Support Facility
Program is found in the Device Support Facilities User's Guide and Reference,
GC3S-0033.

Related Publications for eMS/DOS Users

The CMS ESERV command invokes the VSE ESERV program, and uses, as input,
the control statements that you would use in VSE. These control statements are
described in Guide to the DOS/VSE Assembler, GC33-4024.

Linkage editor control statements, used when invoking the linkage editor under
CMS/DOS, are described in VSE/AF System Control Statements, SC33-4024.

For information on DOS/VSE and CMS/DOS tape label processing, refer to the
following publications:

VSE/AF Tape Labels, SC24-S212

VSE/AF Macro User's Guide, GC24-5211

For information about using DL/I in the CMS/DOS environment, see DL/ I
DOS/VS Data Base Administration, SH24-S011.

Preface ix

SP EDITOR
USER'S GUIDE

SC24-5220

SP
INTERPRETER
USER'S GUIDE

SC24-5238

SP EDITOR
COMMAND
AND MACRO
REFERENCE

SC24-5221

SP
INTERPRETER
REFERENCE

SC24-5239

Reference Summaries r----------
I

I
I
I
I
I
I
I

QUICK
GUIDE
FOR USERS

SX20-4400

L ___ _

CP
COMMAND
REFERENCE

SC19-6211

EXEC2
REFERENCE

SC24-5219

To order all the Reference Summaries, use order number SBOF 3820. -----------------------------,
I

I
I
I
I _ ____________________ - ___ - _~ __ J

Figure 0-1 (Part 1 of 2). VM/SP Library Interrelationship of Publications

x VM/SP eMS User's Guide

Program Service

SYSTEM
MESSAGES
AND CODES

SC19-6204

PROBLEM
DETERMINA
TION
VOL. 1 (CP)

LY20-0892

OLTSEP
AND ERROR
RECORDING
GUIDE

SC19-6205

DATA AREAS
AND CON
TROL BLOCKS
VOL. 1 (CP)

LY24-5220

Auxiliary Service Support

DEVICE
SUPPORT
FACILITIES

GC35-0033

EREP
MESSAGES

GC28-1179

IPCS
EXTENSION
USER'S GUIDE
AND
REFERENCE

SC34-2020

EREP
PROGRAM

GC28-1178

SERVICE
ROUTINES
PROGRAM
LOGIC

LY20-0890

PROBLEM
DETERMINA
TION
VOL. 2 (CMS)

LV20-0893

DATA AREAS
AND CON
TROL BLOCK~
VOL. 2 (CMS)

LY24-5221

Device Support Facilities
IPes Extension 5748-SA1

Environmental Recording
Editing and Printing
(EREP)

Auxiliary Communication Support

RSCS
NETWORKING
GENERAL
INFORMA
TION

GH24-5004

VCNA
GENERAL
INFORMA
TION

GC27-0501

RSCS
NETWORKING
PROGRAM
REFERENCE
AND
OPERATIONS

SH24-5005

VCNA
INSTALLA
TION
OPERATION
AND
TERMINAL USE

SC27-0502

RSCS
NETWORKING
LOGIC

LY24-5203

VCNA
MESSAGES

SC27-0510

Figure 0-1 (Part 2 of 2). VM/SP Ubrary Interrelationship of Publications

VCNA
LOGIC

LV38-3033

Rses Networking
5748-XP1

VT AM Communications
Networking Application
(VCNA) 5735 - Re5

Preface xi

xii VM/SP eMS User's Guide

Contents

Part 1: Understanding CMS ... Pl-l

Chapter 1. Getting Acquainted with VM/SP 1-1
How You Communicate With VM/SP . 1-1

What You Must Know to Use VM/SP 1-3
Beginning Your Terminal Session .. 1-3

Getting Into CMS .. 1-4
Ending Your Terminal Session 1-4
Entering Commands ... 1-5
RETRIEVE Function .. 1-6
Setting Program Function Keys ... 1-6
Display Screen Characteristics .. 1-7

Messages . : 1-7
Status Notices ... 1-7
Additional Display Screen Capabilities 1-9
How VM/SP Responds to Your Commands 1-9

Getting Acquainted With CMS . 1-11
Virtual Disks and How They Are Defined , . 1-14

Permanent Virtual Disks . 1-14
Defining Temporary Virtual Disks .. 1-15
Formatting Virtual Disks ... 1-15

Sharing Virtual Disks: Linking ... 1-16
Identifying Your Disk To CMS: Accessing 1-17

Releasing Virtual Disks . 1-17
Console Output ... 1-18

Chapter 2. VM/SP Environments and Mode Switching 2-1
The CP Environment ... 2-2
The CMS Environment ... 2-2

EDIT and CMS Subset ... 2-3
DEBUG ... 2-5
CMS/DOS ... 2-6

Interrupting Program Execution ... 2-7
Virtual Machine Interruptions .. 2-8
Control Program Interruptions .. 2-9
Address Stops and Breakpoints ... 2-9

Using APL .. 2-9
Error Situations ... 2-10
Leaving the APL Environment .. 2-10

Using the 3277 Text Feature .. 2-11
Error Situations ... 2-11

Chapter 3. The CMS File System .. 3-1
CMS File Formats ... 3-1
How CMS Files Get Their Names .. 3-1

Duplicate Filenames or Filetypes .. 3-2
What Are Reserved Filetypes? .. 3-3

Filetypes for CMS Commands .. 3-3
Output Files: TEXT and LISTING , 3-7
Filetypes for Temporary Files .. 3-8
Filetypes for Documentation ... 3-9

Filemode Letters and Numbers .. 3-9
When to Specify Filemode Letters: Reading Files 3-11
When to Specify Filemode Letters: Writing Files 3-12
How Filemode Numbers are Used .. 3-13
When To Enter Filemode Numbers 3-14

Managing Your CMS Disks ... 3-15
CMS File Directories . 3-16
CMS Command Search Order ... 3-17
CMS Command Execution Characteristics . 3-19
Displaying a List of Your CMS Files ... 3-20

Finding Files in Your FILELIST List 3-21

Contents xiii

xiv VM/SP CMS User's Guide

Erasing Files from FILELIST ... 3-22
Listing your Files with the LISTFILE command 3-22
Comparing Contents of Files .. 3-23
Copying Files ~ 3-23
Renaming Files .. 3-23
Using Synonyms ... 3-23

Chapter 4. What You Can Do with CMS Commands 4-1
Beginning and Ending Your Terminal Session 4-2
Tailoring Your System ... 4-3
Requesting Information ... 4-4
Communicating with Other Computer Users 4-5
Controlling Terminal Output ... 4-6
Sharing Virtual Disks .. 4-7
Creating and Editing Files ... 4-8
What You Can Do to the Files in Your Virtual Reader 4-9
Receiving or Loading Files onto Your Disk . 4-10
Erasing Files from Your Virtual Disk 4-11
Modifying Files:.............................. 4-12
Moving Files ... 4-13
Developing and Testing CMS Programs 4-14
Developing and Testing OS Programs . 4-15
Developing and testing VSE Programs 4-16
What You Can Do to Your VSAM Catalogs . 4-18
Interactive Debugging . '.' . 4-19

Chapter 5. Editing Your Files ... 5-1
Editors Available for You to Use .. 5-1

The System Product Editor .. 5-1
The CMS Editor ... 5-2

The XEDIT Command ... 5-2
Writing a File Onto Disk .. 5-2
Using the Editor in Line Mode ... 5-5

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-1
CMS Unit Record Device Support ... 6-1

Using the CP Spooling System .. 6-1
Spool File Characteristics ... 6-1
Altering Spool Files ... 6-4
Using Your Card Punch and Card Reader in CMS 6-5

Handling Tape Files in CMS ... 6-7
Using the CMS TAPE Command .. 6-8

Tape Labels in CMS 6-11
User Responsibilities . 6-11
Label Processing in OS Simulation . 6-11
Label Processing in CMS/DOS .. 6':'18
CMS TAPESL Macro . 6-21
Tape Label Processing by CMS Commands 6-21
LABELDEF Command .. 6-23
End-of-Volume and End-of-Tape Processing 6-24
Error Processing ... 6-25
The MOVEFILE Command .. 6-26
Tapes Created by OS Utility Programs 6-26
Specifying Special Tape Handling Options 6-27

Chapter 7. Communicating with Other Computer Users 7-1
What is a Names File? .. 7-1

Creating a Names File ... 7-1
Sending Messages ... 7-5
Receiving Messages . 7-6
Sending Notes and Files•... 7-7

Composing Notes . 7-7
Sending a Note .. 7-8

Sending Files .. 7-8
Sending One File .. 7-10

Receiving Notes and Files .. 7-10
Alternate Method of Sending Files .. 7-14

Part 2: Program Development Using CMS P2-1

Chapter 8. Programming for The CMS Environment 8-1
Program Linkage . 8-1

Return Code Handling ... 8-2
Parameter Lists .. 8-2

Calling a CMS Command from a Program 8-4
Creating Immediate commands . 8-6
Executing Program Modules . 8-7

The Transient Program Area . 8-8
CMS Macro Instructions .. 8-9

Macros for Disk File Manipulation ... 8-9
CMS Macros for Terminal Communications 8-17
CMS Macros for Unit Record and Tape I/O 8-17
Interruption Handling Macros ... 8-18

Updating Source Programs Using CMS 8-18
The UPDATE Philosophy .. 8-19
Update Files ,....................... 8-19
Sequencing Output Records . 8-22
Multiple Updates .. 8-25
Multiple Updates with XEDIT ... 8-28
The VMFASM EXEC Procedure ... 8-31

Chapter 9. Developing OS programs under CMS 9-1
Using as Data Sets in CMS .. 9-2

Access Methods Supported by CMS .. 9-3
OS Simulated Data Sets .. 9-4

Using the FILEDEF Command ... 9-5
Specifying the ddname ... 9-5
Specifying the Device Type . 9-6
Entering File Identifications ... 9-6
Specifying CMS Tape Label Processing 9-7
Specifying Options . 9-7

Creating CMS Files From OS Data Sets 9-9
Using CMS Libraries . 9-11

The MACLIB Command . 9-12
Manipulating MACLIB Members ... 9-15
System MACLIBs ... 9-16
Using as Macro Libraries .. 9-16

Using as Macro Simulation Under CMS 9-17
OS Data Management Simulation . 9-18

Assembling Programs in CMS ... 9-20
Executing Programs ... 9-21

Executing TEXT Files .. 9-22
TEXT Libraries (TXTLIBS) .. 9-23
Resolving External References ... 9-24
Controlling the CMS Loader .. 9-25
Creating Program Modules ... 9-27
Using EXEC Procedures ... 9-27

Executing Members of as Module Libraries or CMS LOADLIBS 9-28
Specifying Input to the LKED Command 9-30

Chapter 10. Developing VSE Programs Under CMS 10-1
The CMS/DOS Environment .. 10-1
DL/I in the CMS/DOS Environment ., 10-4
Using DOS Files on DOS Disks .. 10-4

Reading DOS Files ... 10-5
Creating CMS Files from DOS Libraries . 10-6

Using the ASSGN Command .. 10-7
Manipulating Device Assignments .. 10-8
Virtual Machine Assignments ... 10-9

Using the DLBL Command ... 10-9

Contents xv

xvi VM/SP CMS User's Guide

Entering File Identifications ... 10-10
Using DOS Libraries in CMS/DOS ... 10-11

The SSERV Command ... 10-l2
The RSERV Command ... 10-12
The PSERV Command ... 10-13
The ESERV Command .. 10-13
The DSERV Command .. 10-14
Using DOS Core Image Libraries .. 10-15

Using Macro Libraries .. 10-15
CMS MACLIBs .. 10-15
Creating a CMS MACLIB ... 10-16
The MACLIB Command .. 10-17
Manipulating MAC LIB Members .. 10-19

VSE Assembler Language Macros Supported 10-21
Assembling Source Programs ... 10-23
Link-editing Programs in CMS/DOS .. 10-~5

Linkage Editor Input .. 10-25
Linkage Editor Output: CMS DOSLIBs 10-27

Executing Programs in CMS/DOS ... 10-28
Executing DOS Phases ... 10-28
Search Order for Executable Phases 10-28
Making I/O Device Assignments .. 10-29
Specifying a Virtual Partition Size 10-30
Setting the UPSI Byte .. 10-31
Debugging Programs in CMS/DOS 10-31
Using CMS EXEC Procedures in CMS/DOS 10-31

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-1
Executing VSAM Programs Under CMS . 11-1

Using the AMSERV Command .. 11-3
AMSERV Output Listings . 11-3
Controlling AMSERV Command Listings . 11-4

Manipulating OS and DOS Disks for Use with AMSERV 11-5
Data and Master Catalog Sharing . 11-6
Disk Compatibility ... 11-6
Using VM/SP Minidisks . " ... 11-8
Using The LISTDS Command ... 11-8
Using Temporary Disks .. 11-9

Defining DOS Input and Output Files . 11-11
Using VSAM Catalogs ... 11-11
Defining User Catalogs ... 11-13
Using a Job Catalog ... 11-14
Catalog Passwords .. 11-15
Verifying A Catalog Structure .. 11-15
Defining and Allocating Space for VSAM files 11-15
Specifying Multiple Extents .. 11-16
Specifying Multivolume Extents , 11-16
Using Tape Input and Output .. 11-17

Defining OS Input and Output Files .. 11-19
Allocating Extents on OS Disks and Minidisks 11-20
Using VSAM Catalogs ... 11-21
Using a Job Catalog ... 11-23
Catalog Passwords .. 11-24
Verifying a Catalog Structure .. 11-24
Defining and Allocating Space for VSAM files 11-24
Specifying Multivolume Extents ... 11-25
Using Tape Input and Output .. 11-26
Reading Tapes ... 11-27

Using AMSERV Under CMS ... 11-28
Using the DEFINE and DELETE Functions 11-28
Defining a Suballocated Cluster . 11-29
Defining a Unique Cluster ... 11-29
Using the REPRO, IMPORT, and EXPORT (or EXPORTRA/IMPORTRA) functions .. 11-30
Writing EXECs for AMSERV and VSAM 11-32

VSE/VSAM Macros ... 11-33
Obtaining the VSE/VSAM Macros 11-34

OS/VSAM Macros Supported for Use in CMS 11-35
OS/VSAM Error Codes .. 11-39

Chapter 12. Using the CMS Batch Facility 12-1
Submitting Jobs to the CMS Batch Facility 12-1

Input to the Batch Machine ... 12-1
Submitting Virtual Card Input to the CMS Batch Facility 12-2
How the Batch Facility Works ... 12-4

Preparing Jobs for Batch Execution ... 12-5
Restrictions on CP and CMS Commands in Batch Jobs 12-5
Batch Facility Output ... 12-6

Purging and Reordering Batch Jobs .. 12-7
Using CMS EXEC Files for Input to the Batch Facility 12-8

Sample System Procedures for Batch Execution . 12-9
A Batch EXEC for a Non-CMS User 12-11

Chapter 13. Debugging Your Program Using VM/SP 13-1
Preparing to Debug . 13.-1
When a Program Abends . 13-1

Resuming Execution After a Program Check 13-2
Using DEBUG Subcommands to Monitor Program Execution 13-3

Using Symbols with DEBUG .. 13-4
What To Do When Your Program Loops 13-5
Tracing Program Activity ... 13-6
Using the CP PER Command .. 13-6

Using the GP TRACE Command . 13-8
Controlling a CP Trace . 13-9
Using the SVCTRACE command .. 13-10

Using CP Debugging Commands .. 13-10
Debugging with CP After a Program Check 13-11

Program Dumps .. 13-12
Debugging Modules . 13-12
Comparison Of CP And CMS Facilities For Debugging 13-13
What Your Virtual Machine Storage Looks Like 13-14

Shared and Nonshared Systems ... 13-16
Discontiguous Saved Segments (DCSS) 13-16

Part 3: Learning to use EXECs ... P3-1

Chapter 14. Introduction to the EXEC Processors . 14-1
The System Product interpreter .. 14-1
The EXEC 2 Processor .. 14-2

Relationship of EXEC 2 and EXEC 14-2
Invoking EXEC 2•.............•. 14-3
Attributes of EXEC 2 Files ... 14-3

The CMS EXEC Processor ... 14-3

Chapter 15. Creating System Product Interpreter EXECs ; . 15-1
Creating a System Product Interpreter EXEC 15-1

Invoking Your EXEC Files ... 15-1
Sample System Product Interpreter EXECs 15-3

Chapter 16. Creating a PROFILE EXEC 16-1

Chapter 17. Exchanging Data Between Programs through the Stack 17-1
Reading from the Console Stack .. " 17-1
Exchanging Data Between Programs through the Stack . 17-1

Chapter 18. Commands Used with System Product Interpreter EXECs 18-1

Part 4: The HELP Facility .. P4-1

Chapter 19. Using the HELP Facility .. 19-1
Issuing the Help Command ... 19-2

Contents xvii

xviii VM/SP CMS User's Guide

Menus .. ' ' 19-5
The System Product Editor ... 19-7
Using the PA2 Key and the PF Keys .. 19-8
Printing Help Files .. 19-10
Notational Conventions ... 19-11
Naming Conventions for HELP Files 19-11
HELP Facility Filetypes .. 19-12
Filetypes Reserved for HELP .. 19-12

Chapter 20. TaDoring the HELP Facility ,........ 20-1
What you can do To Your HELP Files 20-1

Adding HELP Files .. 20-1
Deleting HELP Files 2<J:1-
Altering Existing HELP Files . 20-1

Creating Menus for HELP Files . 20-2
Example of Menu Creation ... 20-2
Changing Menus .. 20-2

Creating HELP Files . 20-3
Creating Additional HELP Files .. 20-3

Enclosing Text (.BX Format Word) 20-4
Placing Comments in HELP Files (.CM Format Word) 20-6
Conditional Display of Text (.CS Format Word)' 20-6
Use of Format Mode (.FO Format Word) 20-6
Indenting Text (.IN and .IL format Words) 20-7
Use of Offsets (.OF Format Word) 20-8
Spacing between Lines of Text (.SP Format Word) 20-10
Translating Output Characters (.TR Format Word) 20-11

Appendix A. The CMS Editor ... A-I

Appendix B. The CMS EXEC Processor ' , B-1

Appendix C. Considerations for Line Mode Terminals C-l

Appendix D. Summary of CMS Commands. .. D-l

Appendix E. Summary of CP Commands E-l

Appendix F. Sample Terminal Sessions F-l

Glossary ... X-I

Index ... X-3

Figures

0-1. VM/SP Library Interrelationship of Publications x
1-1. Sample XEDIT Screen ... 1-12
1-2. Sample XEDIT Screen In INPUT Mode 1-13
1-3. 3270 Screen Display .. 1-19
2-1. VM/SP Environments and Mode Switching 2-1
3-1. Filetypes Used by CMS Commands ... 3-4
3-2. Filetypes Used in eMS/DOS .. 3-7
3-3. Filetypes for Temporary Work Files ... 3-8
3-4. How CMS Searches for the Command to Execute 3-18
3-5. CMS Command Execution Characteristics 3-19
3-6. Sample FILELIST Screen .. 3-21
5-1. Sample XEDIT Screen .. " 5-3
5-2. Sample XEDIT Screen In INPUT Mode .. 5-4
5-3. Sample FILELIST Screen for a Particular Filetype 5-5
6-1. CP QUERY Unit Record Response ... 6-1
7-1. Sample NAMES Screen " ... " 7-2
7-2. Sample Entry for a List of Names. 7-3
7-3. Another Sample Entry for a List of Names. 7-3
7-4. Sample Entry for a Chained List of Names. 7-4
7-5. Sample 'userid NAMES' File ... 7-5
7-6. Sample Note with Short Headings ... 7-7
7 -7. Sample SENDFILE Menu ... 7-9
7-8. Sample FILELIST Screen Invoked from SENDFILE 7-9
7-9. Sample RDRLIST Screen .. 7-11

7-10. Sample RDRLIST Screen after Receiving a File 7-12
7-11. Sample RDRLIST Screen after Receiving a Note 7-13

8-1. Sample CMS Assembler Program Entry and Exit Linkage 8-3
8-2. FSCB Format .. 8-9
8-3. A Sample Listing of a Program that Uses CMS Macros 8-16
8-4. Updating Source Files with the UPDATE Command 8-23
8-5. An Update with a Control File .. 8-29
9-1. OS Terms and CMS Equivalents .. 9-2
9-2. CMS Commands that Recognize OS Data Sets on OS Disks 9-3
9-3. Access Methods Supported by CMS ... 9-4
9-4. Creating CMS Files from OS Data Sets .. 9-12
9-5. OS Macros Simulated by CMS .. 9-19
10-1. CMS/DOS Commands and CMS Commands with Special Operands 10-3
10-2. VSE Macros Supported by CMS ... 10-22
11-1. Options of OS/VSAM Macros Supported in CMS 11-35
11-2. VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors 11-39
11-3. VSE/VSAM to OS/VSAM Error and Return Code Mapping for CLOSE Errors 11-41
11-4. DATA Management Request Error Return Code Mapping 11-42
13-1. Summary o(DEBUG Subcommands ... 13-5
13-2. Comparison of CP and CMS Facilities for Debugging 13-13
13-3. Simplified CMS Storage Map .. 13-15
17 -1. The Console Stack ... 17-2
19-1. CMS Menu Display .. 19-6
19-2. Keys in the HELP Facility ... 19-8
19-3. Example of Using PF1, PF3, and PF4 in HELP 19-10
20-1. HELP Format Word Summary .. 20-4
A-I. Positioning the Current Line Pointer .. A-8
A-2. Number of Records Handled by the CMS Editor A-15
A-3. Default Tab Settings ... , .. A-17
A-4. Summary of CMS EDIT Subcommands and Macros A':31
B-1. Summary of CMS EXEC Built-in Functions B-10
B-2. Logical Comparisons You can Make in EXEC B-12
B-3. Summary of CMS EXEC Control Statements B-15
B-4. CMS EXEC Special Variables .. " B-17
B-5. The Console Stack ... B-40
D-1. CMS Command Summary .. D-3
D-2. Summary of CMS Commands for System Programmers D-7
E-1. CP Privilege Class Descriptions .. E-1
E-2. CP Command Summary .. E-2

Figures xix

xx VM/SP eMS User's Guide

Part 1: Understanding eMS

Learning how to use CMS is not an end in itself: you have specific tasks to do, and
you need to use the computer to perform them. CMS has been designed to make
these tasks easier, but if you are unfamiliar with CMS, then the tasks may seem
more difficult. The information contained in Part 1 of the VM / SP eMS User's
Guide is organized to help you make the acquaintance of CMS quickly, so that it
enhances, rather than impedes, the performance of your tasks.

Chapter 1, "Getting Acquainted with VM/SP" introduces you to VM/SP and its
conversational component, CMS. It should help you to get a picture of how you, at
a terminal, use and interact with the system.

During a terminal session, commands and requests that you enter are processed by
different parts of the system. How and when you can communicate with these
different programs, is described in Chapter 2, "VM/SP Environments and Mode
Switching. "

Almost every CMS command that you enter results in some kind of activity with a
direct access storage device (DASD), known in CMS simply as a disk, or minidisk.
Data and programs are stored on disks in what are called "files." Chapter 3, "The
CMS File'System" introduces you to the creation and handling of CMS files.

There are more than two hundred commands and subcommands comprising the
VM/SP language. There are some that you may never need to use; there are others
that you will use over and over again. Chapter 4, "What You Can Do with CMS
Commands" contains a sampling of commands in various functional areas, to give
you a general idea of the kinds of things you can do, and the commands available
to help you do them.

Chapter 5, "Editing Your Files" contains some of the basic information you need
to create and write a disk file directly from your terminal, or to correct or modify
an existing CMS file.

Chapter 6, "Using Real Printers, Punches, Readers, and Tapes" discusses how to
use tapes and punched cards in CMS, and how to use your virtual printer and
punch to get real output.

Chapter 7, "Communicating with Other Computer Users" discusses the ways in
which you can send information to other users and can receive information from
them.

Part 1: Understanding eMS P1-1

Pl-2 VM/SP eMS User's Guide

Chapter 1. Getting Acquainted with VM/SP

Virtual Machine/System Product (VM/SP) is a program product that controls
"virtual machines." A virtual machine is the functional equivalent of a real
computer that you control from your terminal, using a command language of verbs
and nouns.

The command languages correspond to the components of VM/SP. CP controls
the resources of the real machine; that is, the physical machine in your computer
room; it also manages the communications among virtual machines, and between a
virtual machine and the real system. CMS is the conversational operating system
designed specifically to run under CP; it can simulate many of the functions of the
OS and DOS operating systems, so that you can run many OS and DOS programs
in a conversational environment.

Although this publication is concerned primarily with using CMS, it also contains
examples of CP commands with which you, as a CMS user, should be familiar.

How You Communicate With VM/SP

The CP Command Language

When you are running your virtual machine under VM/SP, each command, or
request for work, that you enter on your terminal is processed as it is entered;
usually, you enter one command at a time and commands are processed in the
order that you enter them.

You can enter CP commands from either the CP or CMS environment; but you
cannot enter CMS commands while in the CP environment. The concept of
"environments" in VM/SP is discussed in Chapter 2, "VM/SP Environments and
Mode Switching."

After you have typed or keyed in the line you wish to enter, you press the Return
or ENTER key on the keyboard. When you press this key, the line you have
entered is passed to the command environment you want to have process it. If you
press this key without entering any data, you have entered a "null line." Null lines
sometimes have special meailings in VM/SP.

If you make a mistake entering a command line, VM/SP tells you what your
mistake was, and you must enter the line again. The examples in this publication
assume that the command lines are correctly entered.

You can enter commands using any combination of uppercase and lowercase
characters; VM/SP translates your input to uppercase. Examples in this
publication show all user-entered input lines in lowercase characters and system
responses in uppercase characters.

You use CP commands to communicate with the control program. CP commands
control the devices attached to your virtual machine and their characteristics.

For example, if you want to allocate additional disk space for a work area or if you
want to increase the virtual address space assigned to your virtual machine, use the
CP command DEFINE. CP takes care of the space allocation for you and then
allows your virtual machine to use it.

Chapter 1. Getting Acquainted with VM/SP 1-1

The eMS Command La~age

1-2 VM/SP Cl~S User's Guide

Or if, for example, you are receiving printed output at your terminal and do not
want to be interrupted by messages from other VM/SP users, you can use the CP
command SETMSG OFF to refuse messages, because it is CP that handles
communication among virtual machines. The CP QUERY SET command displays
the status of the CP SET MSG function and other CP SET command functions.

Using CPcommands, you can send messages to the system operator and to other
users, or you can modify the configuration of d~vices in your virtual machine. CP
commands, are available to all virtual machines using VM/SP. You can invoke
these' commands when you are in the virtual machine environment using CMS (or
some otheroperatthg system) in your virtual machine.

The CP commands and command privilege classes (not all commands are available
to all users) are listed in Appendix E, "Summary of CP Commands." The CP
Commands applicable to the average user are discussed in detail in the VM/SP CP
Command Reference for General Users. The rest of the CP commands are
discussed in VM / SP Operator's Guide. However,because many CP commands are
used with CMS commands, some of the CP commands you will use most frequently
are discussed in this publication, in the context of their usefulness for a CMS
application. To aid you in distinguishing between CMS commands and CP
commands; all CP commands used in examples in this publication are prefaced with
"CP." '

TheCMS command language allows you to create, modify, and debug problem or
application programs and, in general, to manipulate data files.

Many as language processors can be executed under CMS: the assembler, VS
BASTC, as FORTRAN, VS FORTRAN, OS/VS COBOL, and as PL/I
Optimizing and Checkout Compilers. In addition, the DOS/VS COBOL, DOS
PL/I, VS APL, and DOS VS RPG II Program Products are supported. You can
find a comprehensive list of language processors that can be executed under CMS
and relevant publications in the VM / SP Introduction. CMS executes the assembler
and the' compilers when you invoke them with CMS commands. The ASSEMBLE
command is used to present examples in this publication;, the supported compiler
commands are described in the appropriate DOS and OS program product
documentation.

When you issue the XEDIT command, you invoke the System Product editor to
create, modify, or manipulate CMS disk files. Once the VM/SP System Product
editor has been invoked, Y01ll may execute XEDIT subcommands and use the
System Product interpreter or EXEC 2 macro facility. When you invoke the EDIT
command, the System Product editor places you in CMS (EDIT) migration mode.
In this mode the you can use both EDIT and XEDIT sub commands to modify files.
The System Product interpreter, CMS EXEC interpreter, and the EXEC 2
interpreter provide execution procedures consisting of CP and CMS commands;
they also provide the' conditionaJ execution capability of a macro language. The
DEBUG command gives you several program debugging subcommands.

Other eMS commands allow you, to read c~rds from a virtual card reader, punch
cards to a virtual card. punch,and print records on a virtual printer. Many
commands .areprovided to help you manipulate your virtual disks and files.

You use 'the HELP command to display at your terminal information on how to use
CP' commands and CMScommands, subcommands, and EXECs, and explanations

of CP and CMS messages. You can issue the HELP command when a brief
explanation of syntax, a parameter, or function is sufficient, thereby avoiding
interrupting your terminal session to refer to a manual.

Since you can invoke CP commands from within the CMS virtual machine
environment, the CP and CMS command languages are, for practical purposes, a
single, integrated command language for CMS users.

What You Must Know to Use VM/SP

Before you can use CP and CMS, you should know:

1. how to operate your terminal
2. your userid (user identification) and password.

The Terminal: Your Virtual Console

There are many types of terminals you can use as a VM/SP virtual console. Before
you can conveniently use any of the commands and facilities described in this
publication, you have to familiarize yourself with the terminal you are using.
Generally, you cfln find information about the type of terminal you are using and
how to use it with VM/SP in the VM / SP Terminal Reference. If your terminal is a
3767, you also need the IBM 3767 Operator's Guide.

In this publication, examples and usage notes assume that you are using a display
terminal (such as a 3277). If you are using a typewriter style terminal (such as a
2741) consult Appendix C, "Consid.erations for Line Mode Terminals" for a
discussion of special techniques that you can use to communicate with VM/SP.

Your Userid and Password: Keys into the System

Your uSt(rid is a symbol that identifies your virtual machine to VM/SP and allows
you to gain access to the system. Your password is a symbol that functions as a
protective device ensuring that only those allowed can use your virtual machine.
The userid and password are usually defined by the system programmer for your
installation.

Beginning Your Terminal Session

To establish contact with VM/SP, you switch the terminal device on and VM/SP
responds with some form of the message:

VM/370 online

to let you know that VM/SP is running and that you can use it. If you do not
receive the "VM/370 online" message, see the VM/SP Terminal Reference for
specific directions. You can now press the ENTER key (or equivalent) on your
terminal to clear the display. Now, enter your first command to identify yourself to
VM/SP, the CP LOGON command. If your userid is TIGER, then you type:

cp logon tiger

and press the ENTER key. You only need to type L, because L is short for
LOGON. Remember that throughout this publication all CP command will be
preceded with "CP" so that you can distinguish them from CMS commands.

If VM/SP accepts your userid, it responds by asking you for your password:

Chapter 1. Getting Acquainted with VM/SP 1-3

I Getting Into eMS

ENTER PASSWORD:

Now, carefully type your password, and press the ENTER key. You may not see
your password as you type it. This is a security measure .and it prevents others
from learning your password. If you receive the message, PASSWORD
INCORRECT, you will have to start over, beginning with the CP LOGON
command.

After a successful logon, your next step is to load CMS in your virtual machine
using the CP IPL command. IPL stands for Initial Program Load.

ep ipl ems

where "cms" is assumed to be the saved system name for your installation's CMS.
VM/SP responds by displaying a message such as:

VM/SP CMS - 05/16/83 12:54

to indicate that the IPL command executed successfully. Press the ENTER key
again. VM responds with a message, the last line, known as the ready message,
which may look like this:

R; T=0.01/0.01 08:05:50

At this point you have IPL'ed CMS and you can now enter both CP and CMS
commands.

Your userid may be set up for an automatic IPL, so that you receive a message,
indicating that you are in the CMS command environment, without having to issue
the IPL command.

Note: If this is the first time you are using a new virtual disk assigned to
you, you receive the message:

DMSACC112S 'A(191)' DEVICE ERROR

and you must "format" the disk, that is, prepare it for use with CMS files. See
"Formatting Virtual Disks" below.

Ending Your Terminal Session

1-4 VM/SP eMS User's Guide

To end your terminal session, use the CP LOGOFF command. Enter:

ep logoff

and press the ENTER key, or just enter:

ep log

and press the ENTER key, because LOG is short for LOGOFF.

At times you may be running a long program under one userid and wish to use your
terminal for some other work. Then, you can disconnect your terminal using the
CP command DISCONN:

I Logon Procedure Summary

Logoff Procedure Summary

Entering Commands

cp disconn

or

cp dis conn hold

Your virtual machine continues to run, and is logged off the system when your
program has finished executing. If you want to regain terminal control of your
virtual machine after disconnecting, log on as you would to begin your terminal
session. Your virtual machine is placed in the CP environment, and to resume its
execution, you use the CP command BEGIN. You should not disconnect your
virtual machine if a program requires an operator response, since the console read
request cannot be satisfied.

Remember to press the ENTER key after you type a command.

1. Enter CP LOGON userid
2. Enter your password when prompted
3. Enter IPL CMS
4. Press the ENTER key again.

I 1. Enter CP LOGOFF

The IBM 3270 display terminal, commonly referred to as a 3270, functions
somewhat differently from a typewriter-style terminal when you use it as a virtual
machine console under VM/SP. Apart from the obvious difference in the way
output is displayed, there are special techniques you can use with a 3270 that you
cannot use on a 2741 or other typewriter terminals. Since the keyboard on a 3270
is never 10'cked during the execution of a command or program, you can enter
successive command lines without waiting for the completion of the previous
command. This stacking function can be combined with the other methods of
stacking lines, such as using the logical line end symbol (#) to stack several
command lines. If you try to enter more lines than the terminal buffer can
accommodate, however, you receive the status message NOT ACCEPTED and you
must wait until the buffer is cleared before you can enter the line.

You will find, as you become accustomed to using a 3270, that the #CP function is
very useful. The #CP function allows you to pass a command line to the control
program immediately, bypassing any processing by the virtual machine (CMS).
The #CP function can be used in any VM/SP environment, and you can enter it
even when a program is executing. You do not have to interrupt a program's
execution to enter a command line such as:

#cp display psw

to display the current PSW, or:

#cp spool printer class s

to spool your virtual printer.

Chapter 1. Getting Acquainted with VM/SP 1-5

RETRIEVE Function

One of the most common user difficulties is typing errors. The RETRIEVE
function provides a convenient and time-saving method of correcting errors without
retyping the entire input. You can use this function by defining a program function
(PF) key for it, using a command such as:

#CP set pf12 retrieve

If you define a PF key for the RETRIEVE function, VM/SP remembers each input
line entered at the terminal. When you press the PF key, VM/SP redisplays the
latest input line in the input area, so that you can modify and re-enter the data.
This allows you to correct errors, change your input, or repeatedly reissue a
command.

VM/SP actually remembers several input lines. The number of lines remembered
depends on the length of the lines; VM/SP remembers more short lines than long
lines, but it can always remember at least one full input line. Duplicate input lines
(lines that are the same as the previous input) are not remembered because it is not
useful to remember the same line twice. For security reasons, input lines that are
not displayed at the terminal, such as passwords, are never remembered.

When a RETRIEVE program function key is first pressed, VM/SP redisplays the
latest input line. If a RETRIEVE key is pressed again, VM/SP displays the
previous input line. As the key is pressed, VM/SP steps through the input lines
displaying them one at a time. When VM/SP reaches the oldest line that it has
remembered, it cycles back to the latest one again. When an input line is entered,
VM/SP resets itself so that the RETRIEVE program function key starts with the
latest input line.

Note: For CP and CMS commands, there is a simple way to reset the
RETRIEVE function to the latest input line: simply enter a single asterisk
(*), which is treated as a comment by both CP and CMS. Then press the
RETRIEVE program function key once to get the asterisk redisplayed, and
a second time to get the previous input line redisplayed.

Setting Program Function Keys

1-6 VM/SP eMS User's Guide

If there are CP and CMS commands that you use frequently, you can set the
program function (PF) keys on your terminal to execute them. Some examples of
commands you might wish to catalog on PF keys are:

#CP DISPLAY PSW
#CP QUERY PRINTER ALL
QUERY SEARCH

To set functions keys 1, 2, and 3 to perform these command functions, enter:

cp set pf1 immed n#cp display psw
cp set pf2 immed n#cp query printer all
cp set pf3 immed query search

When you want to execute a #CP function with a PF key, or you want a PF key to
execute a series of commands, you must use the logical escape symbol (") when
you enter the SET command. For example:

cp set pfS immed xedit test filen#bon#input line"#file

sets the PF5 key as:

XEDIT TEST FILE#BO#INPUT LINE#FILE

The above examples use the IMMED operand of the SET command, which
specifies that the function is performed as soon as you press the PF key. You can
also set a key so that it is delayed; that is, the command or data line is placed in the
user input area. Then, you must press the ENTER key to execute the command.
You may modify the line before you enter it. This is the default setting (DELAY)
for program function keys. For example, you might set a key as:

QUERY DISK X@

When you press this PF key, the command line is placed in the user input area, with
the cursor positioned following the"@" logical character delete symbol; you can
enter the mode letter of the disk you are querying before you press the ENTER key
to execute the command. If you enter' A', the resulting command as seen by CMS
is 'QUERY DISK A'.

You can set all of your program function keys in your PROFILE EXEC, so they
are set each time you load CMS.Y OU can change a PF key setting any time during
a terminal session, according to your needs.

CP SET PF5 IMMED XEDIT TEST FILE #BO# INPUT

For more details on setting PF keys, see the VM / SP CP Command Reference for
General Users and the VM / SP Terminal Reference.

Display Screen Characteristics

Status Notices

During a CP or CMS session (other t~an an edit session) messages and warnings
from the system operator or other users are highlighted. This distinguishes these
messages from other output and lessens the possibility of important messages being
lost or ignored.

A major feature of a 3270 display screen isthe screen status area, which indicates,
at all times that you are logged on, the current operating condition your virtual
machine is in. Understanding the status conditions can help you use CMS on a
3270 more effectively.

The screen status area indicates one of the following conditions:

CPREAD

VMREAD

After you log on, this is the first status message you see; it
indicates that the terminal is waiting for a line to be read by
the control program. You can enter only CP commands
when the screen status area indicates a CP READ.

This status indicates that your terminal is waiting for a line to
be issued to your virtual machine; you may be in the CMS
environment, in the edit or debug environments, or you may
be executing a program or an EXEC that has issued a read to
the console.

Chapter 1. Getting Acquainted with VM/SP 1~7

RUNNING

MORE ...

HOLDING

1-8 VM/SP eMS User's Guide

This' statusnieans that your virtual machine is operating.
Once you have loaded CMS and are using the CMS
environment; this status is almost continually in effect, even
when you are not currently executing a command or program.

You can:alter the way this works by using the AUTOREAD
function of the SET command. When the AUTOREAD
setting is OFF, (the default for display terminals), your
terminal displays a RUNNING status after the execution of
each CMS coll11i1and. If you want the terminal to be in a VM
READ status following each command, issue:

set autoread on

The ON setting is the default for typewriter terminals,
because a read on a typewriter terminal must be accompanied
by the unlockirig of the keyboard.

The: advantage of keeping your virtual machine in a running
status even when it is not actually executing a program is that
it makes 'your terminal ready to receive messages. If your
terminal is waiting for a read, either from CP or from the
virtual machine, and if a user or a program sends a message
to your virtual console, then the message is not displayed
until you use the ENTER key to enter a command or null
line. When your machine is in a running status, the terminal
console is always ready to accept messages.

If your virtu31 machine is in the CP environment, and you
want your terminal to be in a running status, you can use the
command:

cp sleep

To return to the CP READ status, you must press the PAl
key or the ENTER key.

This status indicates that your display screen is full, but that
there is more data to be displayed. This message, in addition
to indicating that there is more data, gives you a chance to
fn~eze your screen's current display so you can continue to

. examine it, if necessary.

When you see the screen is in a MORE ... status, you can
either:

• pressthe Clear, Cancel, or PA2 keys to clear the screen
and see the next screen, or

• press the ENTER key to hold the screen in its present
status. If you do not do either, then after 60 seconds, the
screen is cleared and the next screen is displayed.

This indicates that you have pressed the ENTER key to
freeze the screen. You must use the Cancel, Clear, or P A2
keys to erase this screen and go on to the next display.

A holding status also results if you have received a message
that appeared on this screen. When the screen becomes full,
it does not automatically pass to the next display after 60
seconds, but waits until you specifically clear the screen.
(This feature ensures that any important messages you
receive are not lost.)

NOT ACCEPTED Indicates that you are trying to enter a command line but the
terminal buffer is full and cannot accept it. This message is
also issued when you attempt to use the 3270 COpy function
and a printer is either not available or not ready.

AdditiolUll Display Screen Capabilities

The Extended Highlight feature and the Seven-Color feature are two added
capabilities available for your use. Both features are available on the 3279 Models
2 and 3. If you are using 3278 Model 2, 3, 4, or 5, the options for both features
will be accepted. However, only the highlight feature will be operable.

The CP SCREEN command (with its operands) allows you to chose one of three
highlighting features (blinking, underscore, or reverse video) and one of seven
different colors (red, green, blue, pink, turquoise, yellow, or white) for each screen
area.

If you want the input area to be turquoise without highlighting, you should enter:

cp screen inarea turquois none

Or, if you want the input area pink and the status area yellow with the blinking
highlight, you should enter:

cp screen inarea pink status yellow blink

The CP QUERY SCREEN command displays the color and extended highlight
values currently in effect. For more details on the CP SCREEN command, see
VM / SP CP Command Reference for General Users and for more details on the
terminal display areas, see VM / SP Terminal Reference. .

You can tailor your XEDIT screen colors with the XEDIT subcommand SET
COLOR. Refer to the System Product Editor Command and Macro Reference for a
description of the SET COLOR XEDIT subcommand.

How VM/SP Responds to Your Commands

CP and CMS respond differently to different types of requests. All CMS
command responses (and all responses to CP commands that are entered from the
CMS environment) are followed by the CMS ready message. The form of the
ready message can vary, be.cause it can be changed using the SET command. The
long form of the ready message is:

R; T=7.36/19.89 09:26:11

If you have issued the command:

set rdymsg smsg

meaning, set the ready message to the short form, the ready message looks like:

Chapter 1. Getting Acquainted with VM/SP 1-9

R;

When you enter a command line incorrectly, you receive a message, describing the
error. The ready message contains the last 5 digits (4 digits for a negative return
code) from the command. For example:

R(00028);

indicates that the return code from the command was 28.

A ready message from the command may contain a negative return code; for
example:

R (-0001) ;

indicates that the return code from the command was -0001.

Some Sample CP and CMS Command Responses

I-to VM/SP eMS User's Guide

If you enter a CP or CMS command that requests information about your virtual
machine, the response should be the information requested. For example, if you
issue the command:

cp display g

CP responds by showing you the contents of your virtual machine's general
registers, for example:

GPR 0
GPR 4
GPR 8
GPR 12

00000003 00003340 000007AO 00000003
00000848 C4404040 00000040 00002DFO
00000008 000132F8 00002BAO 00002230
00003238 FFFFFFFD 50013386 00000000

Similarly, if you issue the CMS command:

listfile * assemble c

you might receive the following information:

JUNK
MYPROG

ASSEMBLE C1
ASSEMBLE C1

If you enter a CP command to alter your virtual machine configuration or the status
of your spool files, CP responds by telling you that the task is accomplished. The
response to:

cp purge reader all

might be:

0004 FILES PURGED

Some CP commands, those that alter some of the characteristics of your virtual
machine, give you no response at all. If you enter:

cp spool e class x hold

you receive no response from CP.

Certain CMS commands may issue prompting messages, to request you to enter
more information. The SORT command, which sorts CMS disk files, is an
example. If you enter:

sort in file a1 out file a1

you are prompted with the message:

DMSSRT604R ENTER SORT FIELDS:

and you can then specify which fields you wish the input records to be sorted on.

Getting Acquainted With eMS

If you have just logged on for the first time, and you want to try a few CMS
commands, enter:

query disk a

the response might look like:

LABEL CUU M STAT CYL TYPE BLKSIZE BLKS USED-(%) BLKS LEFT BLKS TOTAL
PLC191 191 A R/W 13 3380 102~ 4864- 80 1181 6045

The response should tell you that you have an A-disk at virtual address 191; it also
provides information such as how much room there is on the disk and how much of
it is used. Again, if you receive an error message that indicates the disk may not be
formatted, see "Formatting Virtual Disks."

Your A-disk is the disk you use most often in CMS, to contain your CMS files.
Files are collections of data, and may have many purposes. You can invoke the
System Product editor to create and modify files with the XEDIT command. To
create a file named PARTY SUPPLIES, enter:

xedit party supplies

The display will look like Figure I-Ion page 1-12.

Chapter 1. Getting Acquainted with VM/SP 1-11

PARTY SUPPLIES A1 V 132 TRUNC=132 SIZE=O LINE=O COL=1 ALT=O
CREATING NEW FILE

* * * TOP OF FILE * * *
I ••• + 1 •••• + 2 •••• + 3 •••• + ..•. 4 •••• + s + 6 •••• + 7 •••
* * * END OF FILE * * *

====> input_

Figure 1-1. Sample XEDIT Screen

1-12 VM/SP eMS User's Guide

XED I T 1 FILE

On the command line (next to the arrow) type INPUT and press the ENTER key.
The file is placed in input mode. The cursor is placed automatically on the first line
in the input zone, where you can enter your data. You are writing input lines that
are eventually going to be written onto your A-disk.

Enter the following data:

balloons
cake
party hats
ice cream
guests

PARTY SUPPLIES A1 V 132 TRUNC=132 SIZE=12 LINE=O COL=1 ALT=O
INPUT MODE:

* * * TOP OF FILE * * *
I ••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••• + 7 •••• +
balloons
cake
party hats
ice cream
guests

====> * * * INPUT ZONE * * *
INPUT-MODE 1 FILE

Figure 1-2. Sample XEDIT Screen In INPUT Mode

Now, press the ENTER key, the screen moves up so that you can enter more data.

When you are finished entering data, press the ENTER key again to return to edit
mode.

To keep this file in permanent storage, you type FILE on the command line and
press the ENTER key. You should see a message that looks something like this:

R;

Even though the file has disappeared from your screen, the editor has saved it on
your disk.

Let's check and see if the'file was really saved. We'll use the LISTFILE command
to list the files on your A-disk with the filename of PARTY. Enter:

listfile party

you should see the following:

PARTY SUPPLIES A1

Let's request a display of the file, using the TYPE command. Enter:

type party supplies

You should see the following:

balloons
cake
party hats
ice cream
guests

Chapter 1. Getting Acquainted with VM/SP 1-13

Since you really don't need this file, you can erase it from your permanent storage
using the ERASE command. Enter:

erase party supplies

When you receive the ready message (R;), you know that the file was erased. Let's
check to see if it really was erased. Use the LISTFILE command again to list the
files on your A-disk with the filename of PARTY. Since you just erased the file,
you'll receive the following message:

FILE NOT FOUND.
R(00028)i

Most CMS commands create or reference disk files, and are as easy to use as the
commands shown above. Your CMS disks are among the most important features
in your VM/SP virtual machine.

Virtual Disks and How They Are Defined

Permanent Virtual Disks

1-14 VM/SP eMS User's Guide

Under VM/SP, a real direct access storage device (DASD) can be divided into
many small areas, called minidisks. Minidisks, often called virtual disks, are
defined in the VM/SP directory, as extents on real disks. For CMS applications,
you never have to be concerned with the extents of your minidisks; when you use
CMS-formatted minidisks, they are, for practical purposes, functionally the same as
real disks. Minidisks can also be formatted for use with OS or DOS data sets or
VSAM files.

You can have two types of disks, permanent and temporary.

Permanent disks

Temporary disks

persist across logons and they are defined in the VM/SP
directory entry for your virtual machine.

are automatically destroyed at logoff. Temporary disks are
those you define for your own virtual machine using the CP
DEFINE command, or those attached to your virtual
machine by the system operator.

Both permanent and temporary disks may be attached to your machine during a
terminal session.

The VM/SP directory entry for your userid defines your permanent virtual disks.
Each disk has associated with it an access mode specifying whether you can read
and write on the disk or only read from it (its read/write status). Virtual disk
entries in the VM/SP directory may look like the following:

MDISK 190 2314 000 050 CMS190 R
MDISK 191 3330 010 005 BDISKE W
MDISK 194 3330 010 020 CMS001 W
MDISK 195 FB-512 1000 500 FBDISK W
MDISK 198 3330 050 010 CMS192 W
MDISK 19E 3330 010 050 CMS19E R

The first two fields describe the device MDISK (minidisk) and the virtual address
of the device. Virtual addresses (shown above as 190, 191, and so on), are the
names by which you and VM/SP identify the disk. Each device in your virtual
machine has an address which mayor may not correspond to the real address of
the device on the VM/SP system.

The third field specifies the device type of your virtual disk. For count-key-data
devices, the fourth and fifth fields specify the starting real cylinder at which your
virtual disk logically begins and the number of cylinders allocated to your virtual
disk, respectively. For FB-S12 devices, the fourth field specifies the starting real
block numbers where your virtual disk begins, and the fifth field is the number of
blocks allocated to your virtual disk.

The sixth field is the label of the real disk on which the virtual disk is defined and
the seventh field is a letter specifying the read/write mode of the disk; "R"
indicates that the disk is a read-only disk, and "W" indicates that you have
read/write privileges. The MDISK control statement of the Directory Service
Program is described in the VM / SP Planning Guide and Reference.

Defining Temporary Virtual Disks

Formatting Virtual Disks

Using the CP DEFINE command, you can attach a temporary disk to your virtual
machine for the duration of a terminal session. The following command allocates a
10-cylinder temporary disk from a 3330 device and assigns it a virtual address of
291:

cp define t3330 as 291 cyl 10

When you define a minidisk, you can choose any valid address that is not already
assigned to a device in your virtual machine. Valid addresses for minidisks range
from 001 through 5FF, for a virtual machine in basic control mode.

Before you can use any new virtual disk, you must format it. This applies to new
disks that have been assigned to you and to temporary disks that you have
allocated with the CP DEFINE command. When you issue the FORMAT
command you must use the virtual address you have defined for the disk and assign
a CMS mode letter, for example:

format 291 c

CMS then prompts you with the following message:

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'C(291) '.
DO YOU WISH TO CONTINUE? (YESINO):

You respond:

yes

CMS then asks you to assign a label for the disk, which may be anything you
choose. Labels can have a maximum of 6 characters. When the message:

DMSFOR605R ENTER DISK LABEL:

is issued, you respond by supplying a disk label. For example, if this is a temporary
disk, you might enter:

scrtch

CMS then erases all the files on that disk, if any existed, and formats the disk for
your use and displays the following messages:

Chapter 1. Getting Acquainted with VM/SP I-IS

FORMATTING DISK 'c'
'10' CYLINDERS FORMATTED ON 'c (291) , .
R; T=0.15/1.60 11:26:03

The FORMAT command should only be used to format CMS disks, that is, disks
you are going to use to contain CMS files. In addition, this command allows you a
choice of physical disk block size as an option. Refer to the VM / SP CMS
Command and Macro Reference for details. Format disks for OS, DOS, or VSAM
applications, using the Device Support Facilities. See the VM / SP Operator's Guide
for details.

Sharing Virtual Disks:' Linking

1-16 VM/SP eMS User's Guide

Since only one user can own a virtual disk, and there are many occasions that
require users to share data or programs, VM/SP allows you to share virtual disks,
on either a permanent or temporary basis, by "linking."

Permanent links can be established for you in your VM/SP directory entry. These
disks are then a part of your virtual machine configuration every time you log on.
You can also have another user's disk temporarily added to your configuration by
using the CP LINK command. For example, if you have a program that uses data
that resides on a disk identified in userid DATA's configuration as a 194, and you
know that the password assigned to this disk is GO, you could issue the command:

cp link to data 194 as 198 r pass= gol

DATA's 194 disk is then added to your virtual machine configuration at virtual
address 198.

The "R" in the command line indicates the access mode; in this case, it tells CP
that you only want to read files from this disk and you will not be allowed to write
on it. If you try to issue this command when someone already has write access to
that disk, you will not be able to establish the link. If you want to link to DATA in
any event, you can reissue the LINK command using the access mode RR:

cp link data 194 198 rr gol

The keywords "TO," "AS," and "PASS=" are optional; you do not have to specify
them.

However, note that using the RR access allows one user to read a disk while
another is updating the same disk at the same time. This may produce
unpredictable results.

You can also use the CP LINK command to link to your own disks. For example,
if you log on and discover that another user has access to one of your disks, you
may be given read-only access, even if it is a read/write disk. You can request the
other user to detach your disk from his virtual machine, and after he has done so,
you can establish the link:

cp link * 191 191

When you link to your own disks, you can specify the userid as * and you do not
need to specify the access mode or a password.

The password cannot be entered on the command line if the password suppression facility was
specified when your system was installed.

You can find more information about the CP LINK command and CP access
modes in VM / SP CP Command Reference for General Users.

Identifying Your Disk To eMS: Accessing

Releosi. Virtual Disks

LINK and DEFINE are CP commands: they tell CP to add DASD devices to your
virtual machine configuration. CMS must also know about these disks, and you
must use the ACCESS command to establish a filemode letter for them:

access 194 b

CMS uses filemode letters to manage your files during a terminal session. By using
the ACCESS command you can control:

• Whether you can write on a disk or only read from it (its read/write status).
• The library search order for programs executing in your virtual machine.
• Which disks are to contain the new files that you create.

If you want to know which disks you currently have access to, issue the command:

query search

You might see the following display:

PLC191
DAT194
CMS190
CMS19E

191 A
198 B
190 S
19E Y

R/W
RiO
RIo
RIO

The first column indicates the label on the disk (assigned when the disk is
formatted), and the second column shows the virtual address assigned to it.

The third column contains the filemode letter. All letters of the alphabet are valid
filemode letters.

The fourth column indicates the read/write status of the disk. The 190 and 19E
disks in this example are read-only disks that contain the CMS nucleus and
disk-resident commands for the CMS system. You will probably use your 191 (A)
disk as your primary read/write work disk.

When you no longer need a disk that you linked or temporarily accessed, then
release that disk. To release a disk, use the CMS RELEASE command:

release c

When you want to assign a currently active filemode letter to another disk, issue
the ACCESS command to assign that filemode letter to another disk. It is not
necessary to release an accessed disk prior to accessing another disk with the same
filemode.

When you no longer need disks in your virtual machine configuration, use the CP
command DETACH to disconnect them from your virtual machine:

cp detach 194
cp detach 291

Chapter 1. Getting Acquainted with VM/SP 1-17

Console Output

Spooling Console Output

3270 COPY Function

1-18 VM!SP eMS User's Guide

If you are going to release and detach the disk at the same time, you can use the
DET option of the RELEASE command:

release 194 (det

When you logoff the disks are released automatically. For more information on
controlling disks in CMS, see "Chapter 3. The CMS File System."

When you use a 3270 terminal as your virtual machine console, you do not
ordinarily retain a console log, as you do on typewriter terminal. There may be
many circumstances in which you need a printed record of your console output,
whether it be to obtain a copy of program-generated output, or to retain a record
of CP and/or CMS commands that resulted in an error condition. There are two
techniques you can use in VM/SP to obtain hardcopy representations of display
terminal sessions: spooling console output and the 3270 copy function.

The CP SPOOL command provides the CONSOLE operand, which allows you to
begin and end console spooling. You enter:

cp spool console start

when you want to begin recording your terminal session, and:

cp spool console stop

when you have finished. In between, you can periodically close the console file to
release for printing whatever has been spooled thus far:

cp spool console close

Other operands that you can enter are the same as you might specify for any
printer file, such as CLASS, COPY, CONT, and HOLD.

An alternate technique is to spool your console to your own virtual reader:

cp spool console start * class a

Then, when you close the console file, instead of being released to the CP printer
spool file queue, it is routed to your virtual reader, and you can load it onto your
A -disk as a CMS disk file:

readcard console file

You can then use the editor to examine it (or to delete sections you don't need)
and use the PRINT command to spool it to the printer.

If you are using a 3270 display terminal, and you have available a 3284, 3286,
3287, 3288, or 3289 printer, you can copy the full screen display currently
appearing on the screen. To copy the screen, you have to assign the copying
function to a program function key, with the SET command:

cp set pf9 copy

Note: The PF key copy function is not available if the printers are
dedicated.

Then, whenever you want to copy a screen display, you can press the PF9 key (or
whichever key you set). The display is printed on any 3270 display printer that is
attached to the same remote control unit as the display terminal. If, when you
press the PF key, the screen status area indicates NOT ACCEPTED, it means that
the printer is either not ready or not available. When you press the PF key and
receive no response, it means that the screen has been copied.

There is a print matrix available to the 3274 and 3276 user that allows control of
the display to printer operations. In addition, a local print key is provided on the
3274 that can be used for copy operations.

Figure 1-3 an example of a 3270 screen display that could be copied on the printer.
When you use the copy function to copy a screen, all 24 lines of the display screen
are copied; the screen status area (indicated as RUNNING in Figure 1-3) is blank
if the 3270 is locally attached. If the 3270 is remotely attached, the entire screen
including the screen status area, is copied. You can use the user input area of your
screen to key in comments, or your name or userid, if several users are spooling
copy files.

DEFINE STORAGE 16384K
STORAGE = 16384K
IPL CMS
VM/SP eMS -- 01/30/80 10:00

testl ... t. jones

RUNNING

FIgure 1-3.3170 Screen DIsplay

Chapter 1. Getting Acquainted with VM/SP 1-19

1-20 VM/SP eMS User's Guide

Chapter 2. VM/SP Environments and Mode Switching

Any "Class Any"
CPCommand

LOGON

"
~

CP Environment 1

Any CP Command 2
IPL CMS
BEGIN3

r-- EXTERNAL

""-+ DEBUG Environment

Any DEBUG Subcommand
RETURN or HX
GO
CP Command Line

When you are using VM/SP, your virtual machine can be in one of two possible
"environments," the control program (CP) environment or the virtual machine
environment, which may be CMS. The CMS environment has several
subenvironments, sometimes called "modes." Each environment or
subenvironment accepts particular commands or subcommands, and each
environment has its own entry and exit paths, responses and error messages. If you
have a good understanding of how the VM/SP environments are related, you can
learn to change environments quickly and use your virtual machine efficiently.

This section introduces the CP and CMS environments that you use and describes:

• Entry and exit paths
• Command subsets that are valid as input

Figure 2-1 summarizes the VM/SP command environments and lists the commands
and terminal paths that allow you to go from one environment to another.

CMS Subset

Any CMS Subset Command
Any CP Command
HX
RETURN

! # CP Command Line

/ V
CMS Environment

/
CMS EDIT Environment

Any CMS Command Any CMS EDIT
Any CP Command-"",

/
Subcommand

CMS EDIT fn ft FILE or QUIT
Execute any OS or Any CMS EDIT Macro

CMS Program CMS
SET DOS ON INPUT INPUT MODE - DEBUG # CP Command Line
CP Command Line

t Any I nput Line
Carrier return or null line
CP Command Line

CMS/DOS Environment ~

V Any CMS Command

~ Any CMS/DOS Command
Any CP Command

r-- Execute any DOS Program Notes:

CP Command Line 1 The CP environment may be entered from any other environment
either by using your terminal's Attention key or equivalent, or by
entering the command # CPo

2 Any CP command that is valid for your privilege class. Any time a
CP command can be entered, it may be prefixed by # CPo

~ Program Execution *-- 3 The BEGIN command returns your virtual machine to the environment
it was in when CP was entered. For example:

HX or (Abend) • If you were in edit or input mode, the current line pointer
(Breakpoint) remains unchanged.
(Address Stop) • If you were executing a program, execution resumes at the

instruction address indicated in the PSW.

Figure 2-1. VM/SP Environments and Mode Switching

Chapter 2. VM/SP Environments and Mode Switching 2-1

The CP Environment

The CMS Environment

2-2 VM/SP eMS User's Guide

With the exception of input mode in the edit environment, you can always
determine which environment your virtual machine is in by pressing the Return or
Enter key on a null line. The responses you receive and the environments they
indicate, are:

Response
CP
CMS
CMS (DOS ON)
CMS SUBSET
DEBUG

Environment
CP
CMS
CMS/DOS
CMS Subset
Debug

When you log on to VM/SP, your virtual machine is in the CP environment. In
this environment, you can enter any CP command that is valid for your privilege
class. This publication assumes that you are a general, or class G, user. You can
find information about the commands that you can use in the VM / SP CP
Command Reference for General Users.

Only CP commands are valid terminal input in the CP environment. You can,
however, preface a CP command line with the characters "CP" or "#CP," followed
by one or more blanks, although it is not necessary. These functions are described
under "The CMS Environment."

You can enter CP commands from other VM/SP environments. There may be
times during your terminal session when you want to enter the CP environment to
issue one or more CP commands. You can do this from any other environment by
doing either of two things:

1. Issue the command:

#cp

2. Use your terminal's Attention key (PA 1 or equivalent). On a 2741 terminal,
you must normally press the Attention key twice, quickly, to enter the CP
environment.

The following message indicates that your virtual machine is in the CP
environment:

CP

After entering whatever CP commands you need to use, you return your virtual
machine to the environment or mode that it came from by using the CP command:

cp begin

which, literally, begins execution of your virtual machine.

You enter the CMS environment from CP by issuing the IPL command, which
loads CMS into your virtual storage area. If you are planning to use CMS for your
entire terminal session, you should not have to IPL again unless a program failure
forces you into the CP environment.

EDIT and eMS Subset

When you issue the IPL command, specify the named system CMS at your
installation. For example:

cp ipl ems

When your virtual machine is in the CMS environment, you can issue any CMS
command and any of the CP commands that are valid for your user privilege class.
You can also execute many of your own OS or DOS programs; the ways you can
execute programs are discussed in Chapter 9, "Developing OS programs under
CMS" and Chapter 10, "Developing VSE Programs Under CMS."

You can enter CP commands from CMS in any of the following ways:

• Using the implied CP function of CMS (See Note.)
• With the CP command
• With the #CP function

Note: For the most part, you may enter any CP command directly from the
CMS environment. This implied CP function is controlled by an operand
of the CMS SET command, IMPCP. You can determine whether the
implied CP function.·is.in effect for your virtual machine by entering the
command:

query impcp

If the response is:

IMPCP = OFF

you can change it by entering:

set impcp on

When the implied CP function is set off, you must use either the CP command or
the #CP function to enter CP commands from the CMS environment. CP
commands that you execute in EXEC procedures must always be prefaced by the
CP command, regardless of the implied CP setting. An example of using the CP
command is:

cp close punch

When you issue CP commands from the CMS environment either implicitly or with
the CP command, you receive, in addition to the CP response (if any), the CMS
ready message. If you use the #CP function, discussed next, you do not receive the
ready message.

You can preface any CP command line with the characters "#CP," followed by one
or more blanks. When you enter a CP command this way, the command is
processed by CP immediately; it is as if your virtual machine were actually in the
CP environment.

The System Product editor and the CMS editor are VM/SP facilities that allow you
to create and modify data files that reside onCMS disks. The editor environment,
more commonly called the edit environment, is entered when you issue either of the
CMS commands, XEDIT or EDIT, specifying the identification of a data file you
want to create or modify. Complete information about the System Product editor,

Chapter 2. VM/SP Environments and Mode Switching 2-3

2-4 VM/SP eMS User's Guide

invoked via the XEDIT command, is found in the VM / SP System Product Editor
Command and Macro Reference and the VM / SP System Product Editor User's
Guide. For introductory tutorial information about editing, refer to the VM/SP
CMS Primer. '

xedit party supplies

is an example of how you would 'enter the edit environment to either create a file
called PARTY SUPPLffiS or to make changes to a disk file that already exists
under that name.

When you enter the edit environment your virtual machine is automatically in edit
mode, where you can only issue XEDIT subcommands, CMS commands, or CP
commands prefaced by "#CP." After you enter the XEDIT subcommand:

input

data lines that you enter are considered input to the file. To return to edit mode,
you must enter a null line.

If you issue the XEDIT subcommand:

ems

the editor responds:

CMS SUBSET

and your virtual machine is in CMS subset mode. When in CMS subset mode, you
can issue any valid CMS subset command, that is, a CMS command that is allowed
in CMS subset mode. These include:

ACCESS
CP
DISK
ERASE
EXEC
EXECIO
FILELIST
GLOBALV
IDENTIFY
LISTFILE

NAMEFIND
NAMES
NOTE
NUCXDROP
NUCXLOAD
NUCXMAP
PEEK
PRINT
PUNCH
QUERY

RDR
RDRLIST
READ CARD
RECEIVE
SENDFILE
SET
STATE
STATEW
TELL
TYPE

You can also issue CP commands. To return to edit mode, you use the special
CMS subset command, RETURN. If you enter the Immediate command HX, your
editing session terminates abnormally and your virtual machine returns to the CMS
environment.

The following is a description of the CMS subset environment as entered by the
'CMS' EDIT subcommand.

1M eMS Subset Environment: When entering CMS subset mode either for a single
command or until the string 'RETURN' is entered, the following processing is done
to ensure that the previous environment is preserved. Upon entry to subset, a
check is made to determine if this entry would constitute a recursion, if so, return
code 1 is returned.

1. ST AE, SPffi, and ST AX information is saved and then cleared.

DEBUG

2. The OS environment settings are saved and then cleared so that any module
that issues an OSRESET based on these flags will not do so.

3. The read and write pointers from any currently opened files are saved.

4. All files are then closed by a 'FINIS * * *', but files with a filemode of 3 are
not erased.

5. Any FSTs that were built by a previous call to ST ATE are saved.

If the entry to subset was just for the execution of a single command, the entry
message is suppressed and the next command is executed immediately. But, of the
request was to enter CMS subset for an indefinite duration, an announcement of
entry to the CMS subset environment is made. This is done so that a strict
differentiation from the strict command environment is given.

The principle difference in subset is the restriction that any command executed may
not use any storage other than DMSFREE storage and the transient area. This
protects programs which may be running in the USER AREA. Also, any ready
message issued from subset is in the abbreviated form (i.e. identical to SET
RDYMSG SMSG) so that program timing information is not effected for the
command currently in progress at the time of subset entry.

Upon termination of CMS subset mode any settings or values that were saved upon
entry to subset are restored.

When you are finished with an edit session, you return to the CMS environment by
issuing the FILE subcommand, which indicates that all modifications or data
insertions that you have made should be written onto a CMS disk. Otherwise, you
can issue the subcommand QUIT, which tells the editor not to save any
modifications or insertions made since the last time the file was written.

More detailed information about EDIT subcommands and how to use the CMS
editor is contained in this publication in "Appendix A" and in the VM/SP eMS
Command and Macro Reference.

CMS DEBUG is a special CMS facility that provides sub commands to help you
debug programs at your terminal. Your virtual machine enters the debug
environment when you issue the CMS command:

debug

You may want to enter this command after you have loaded a program into storage
and before you begin exe,cuting it. At this time you can set "breakpoints," or
address stops, where you wish to halt your program's execution so that you can
examine and change the contents of general registers and storage areas. When
these breakpoints are encountered, your virtual machine is placed in the debug
environment. You can also enter the debug environment by issuing the CP
EXTERNAL command, which causes an external interrupt to your virtual machine.

Valid DEBUG subcommands·that you can enter in this environment are:

Chapter 2. VM/SP Environments and Mode Switching 2-5

eMS/DOS

2-6 VM/SP eMS User's Guide

BREAK
CAW
CSW
DEFINE
DUMP

GO
GPR
HX
ORIGIN
PSW

RETURN
SET
STORE
X

You can also use the #CPfunction in the debug environment to enter CP
commands.

You leave the debug environment in any of the following ways:

• If·the programoyou are runiling completes execution, you are returned to the
CMS environment.

• If your virtual machine entered the debug environment after a breakpoint was
encountered, it returns to CMS when you issue the DEBUG subcommand:

hx

·To continue the execution OfyOUT program, you use the DEBUG
. subcommand:

go

If your virtual machine is in the debug environment and is not executing a
program, the DEBUG subcommand:

hx

returns it to the CMS environment.

Refer to Chapter 13, "Debugging Yotir Program Using VM/SP" for more
information.

If you are a VSE user, the CMS/DOS environment provides you with all the CMS
interactive functions and facilities, as well as special CMS/DOS commands which
simulate VSE functions. The CMS/DOS environment becomes active when you
issue the command:

set dos on

When your virtual machine is in the CMS/DOS environment you can issue any
command line that would be valid in the CMS environment, including the facilities
of XEDIT, DEBUG,and EXEC, except for CMS commands or program modules
that load and/or execute programs that use OS macros or functions.

The following comn.'lands are provided in CMS/DOS to test and develop DOS
programs, and to provide access to VSE libraries:

ASSGN
CATCHECK
DLBL
DOSLIB
DOSLKED

DOSPLI
DSERV
ESERV
FETCH
FeOBOL

LISTIO
OPTION
PSERV
RSERV
SSERV

Your virtual machine leaves the CMS/DOS environment when you issue the
command:

set dos off

If you reload CMS (with an IPL command) during a terminal session, you must
also reissue the SET DOS ON command. For more information about the
CMS/DOS environment, see Chapter 10, "Developing VSE Programs Under
CMS."

Interrupting Program Execution

When you are executing a program under CMS or executing a CMS command,
your virtual machine is not available for you to enter commands. There are,
however, ways in which you can interrupt a program and halt its execution, either
temporarily, in which case you can resume its execution, or permanently, in which
case your virtual machine returns to the CMS environment. In both cases, you
interrupt execution by creating an "attention interruption," which may take two
forms:

• An attention interruption to your virtual machine operating system
• An attention interruption to the control program

These situations result in what are known as virtual machine (VM) or control
program (CP) "reads" being presented to your virtual console. The two keys on
your 3270 keyboard that signal interruptions are the PAl key -- REO key on a
3278 Model2A -- and the Enter key. Throughout this publication, interruption
signaling ha's been described in terms of the Attention key.

On a typewriter terminal, the Attention key, pressed once, causes a virtual machine
interruption (if the terminal mode is set to VM); you must use it when you want to
enter an Immediate command, such as HT or HX. On a display terminal, you can
enter these commands whenever your virtual machine is in a running status,
without having to signal an interruption before you enter the command.

Sometimes, however, if your terminal is displaying output very rapidly, you must
wait until the screen is full and the screen status area indicates a MORE ... status
before you attempt to enter the HT or HX command.

The Enter key can also be used as an interruption signaling key. If you press it
once when your virtual machine is running, you will place your virtual machine in
the VM READ status, so you can enter a command line.

You can enter the CP environment by pressing the PAl key. Whenever you press
this key, your virtual machine is placed in a CP READ status, and you can enter
any CP command. From the CP environment, you must use the CP command
BEGIN to resume execution of your virtual machine. On a typewriter terminal, the
keyboard unlocks when a read occurs.

Whether you have to press the Attention key once or twice depends on the
terminal mode setting in effect for your virtual machine. This setting is controlled
by the CP TERMINAL'command:

cp terminal mode vm

The setting'VM is the default for virtual machines; you do not need to specify it.
The VM setting indicates that one depression of the Attention key sends an
interruption to your virtual machine, and that two depressions results in an
interruption to the control program (CP).

Chapter 2. VM/SP Environments and Mode Switching 2-7

Virtual Machine Interruptions

Halting Screen Displays

2-8 VM/SP eMS User's Guide

The CP setting for terminal mode,-which is the default for the system operator,
indicates that one depression of the Attention key results in an interruption to the
control program (CP). If you are using your virtual machine to run an operating
system other than CMS, you might wish to use this setting. Issue the command:

cp terminal mode cp

While a command or program is executing, if you press the ENTER key on a 3270
(or the Attention key once on a 2741), you have created a virtual machine
interruption.

When your terminal is displaying successive screens of output from a program or a
CMS command, you can use the HT or HX Immediate commands to halt the
display or the execution of the command, respectively. If your terminal is writing
the information at a very rapid rate, you may have difficulty entering the HT or HX
command. In these circumstances, you can use the PAl key -- REQ key on a 3278
Model 2A -- or press the Enter key twice to force your terminal to a CP READ
status. Then, you can use the CP command ATTN or REQUEST to signal a
virtual machine read. When the screen status area indicates VM READ, you can
enter HX or HT. The program halts execution, your terminal will accept an input
line, and you may:

• Terminate the execution of the program by issuing an Immediate command to
halt execution:

hx

The HX command causes the program to abnormally terminate (abend).

• Enter a CMS command. The command is stacked in a console stack and is
processed by eMS when your program is finished executing and the next
virtual machine read occurs. For example:

print abc listing

After you enter this line, the program resumes execution.

• If the program is directing output to your terminal and you wish only to halt
the terminal display,. use the Immediate command:

ht

The program resumes execution. Terminal output can also be suppressed
immediately when you enter a command by placing #HT at the end of the
command line. The logical line end character (#) allows the Immediate
command HT to be accepted; program execution proceeds without typing.

You can, if you want, cause another interruption and request that typing be
resumed by entering the RT (resume typing) command:

rt

• Enter a null line; your program continues execution. The null line is stacked in
the console stack and read by CMS as a stacked command line.

HX, HT, and RT are three of the eMS Immediate commands. They are
"immediate" because they are executed as soon as they are entered. Unlike other
commands, they are not stacked in the console stack. You can only enter an
Immediate command following an attention interruption.

Control Program Interruptions

You can interrupt a program and enter the CP environment directly by pressing the
PAl key on a 3270 or by pressing the Attention key twice quickly, on a 2741.
Then, you can enter any CP command. To resume the program's execution, issue
the CP command:

cp begin

If your terminal is operating with the terminal mode set to CP, pressing the
Attention key once places your virtual machine in the CP environment.

Address Stops and Breakpoints

UsingAPL

A program may also be interrupted by an instruction address stop, which you
specifically set by the CP command ADSTOP. For example, if you issue the
command:

cp adstop 201ea

an address stop is set at virtual storage location X'201EA'. When your program
reaches this address during its· execution, it is interrupted and your virtual machine
is placed in the CP environment, where you can issue any CP command, including
another ADSTOP command, before resuming your program's execution with the
CP command BEGIN. .

Breakpoints, similar to address stops, are set using the DEBUG subcommand
BREAK, which you issue in the debug environment before executing a program.
For example, if you issue:

break 1 201ae

your program's execution is interrupted at this address and your virtual machine is
placed in the debug environment. You can then enter any DEBUG subcommand.
To resume program execution, use the DEBUG subcommand GO. If you want to
halt execution of the program entirely, use the DEBUG subcommand HX, which
returns your virtual machine to the CMS environment. You can find more
information about setting address stops and breakpoints in Chapter
13, "Debugging Your Program Using VM/SP."

If you have a 3277 or 3278 display station equipped with an APL keyboard, you
can use APL on a 3270 terminal in CMS. You invoke the APL virtual machine by
issuing the command specified in the VS APL Program Product documentation.
This command invokes the VS APL-CMS interface program. You are then
prompted to press the APL On/Off key which is on your terminal; pressing this
key changes the keyboard to APL character input mode. You are then prompted
to press the Enter key to continue.

EBCDIC or APL characters can always be displayed; the APL On/Off key does
not change this. The VS APL-CMS interface program issues the TERMINAL
APL ON command for you and selects the appropriate "translation tables. The

Chapter 2. VM/SP Environments and Mode Switching 2-9

Error Situations

TERMINAL APL ON command automatically forces a TERMINAL TEXT OFF
condition. The interface program then invokes the VSAPL program. When the
VSAPL ready message appears on the screen, you can use APL.

You can send a copy of your display screen to a locally or remotely attached
printer. Be sure that the printer you send your output to has the APL feature
installed; if it does not, the APL characters are not printed. Most system printers
do not have an APL print chain; therefore you may need to use the copy function
to direct your screen output displays to a 3284, 3286, or 3287 printer.

If you do not have the APL hardware feature installed on your 3277 or 3278 but
you invoke APL:

• The VSAPL program is invoked and the TERMINAL APL ON command is
issued.

You cannot communicate with the VSAPL .program.

• Any APL characters that are written to the screen appear as blanks.

If you have the APL feature installed on your terminal, but invoke APL
manually without issuing the TERMINAL APL ON command or issue
TERMINAL APL OFF at sometime during APL processing:

• The VSAPL program is activated.

You cannot communicate with the VSAPL program.

• Any APL characters written to the screen appear as blanks.

If you attempt to use the APL O/S (overstrike) key when the APL hardware key is
set off, it acts as a backtab key and repositions the cursor to the beginning of the
user input area.

Leaving the APL Environment

2-10 VM/SP eMS User's Guide

Issue the APL command:

) OFF

to log off VM/SP.

Issue the APL command:

) OFF HOLD

to return to CMS. This APL command invokes the VS APL-CMS interface
program, which:

• Issues the TERMINAL APL OFF command
• Prompts you to. pres~ the APL hardware key
• Returns to CMS

Note: The APL hardware feature is a key, not a switch. Each time you
press the APL key you .reV'erse its. on/off setting. To determine whether

APL is on or off, press a key that represents a special APL character. If
the character displayed is an APL character, the hardware APL feature is
set on. If the character displayed is a non-APL character, you must press
the APL key once to set the APL feature on.

Using the 3277 Text Feature

Error Situations

If you have a 3277 or 3278 display station equipped with the Data Analysis Text
keyboard, you can key in, as well as display, all of the special text characters. For
a description of these characters, see the VM / SP Terminal Reference. These
characters are in addition to those available with standard EBCDIC 3270
terminals. If you have a suitably equipped printer attached to your 3270, you can
use the SET PFnn COPY function to obtain a printed copy of the screen.

When you want to activate the text feature, and use the special characters, enter
the command:

cp terminal text on

The TERMINAL TEXT ON command automatically forces the TERMINAL APL
OFF command. Now, you can use any of the special characters when you enter,
change, or locate text lines in a file.

You leave the special text environment by entering the command:

cp terminal text off

If you do not have the appropriate text hardware feature on your 3270, but attempt
to display a file that contains the characters, the characters appear as blanks on a
3277, and as hyphens on a 3276 and a 3278.

If you inadvertently issue the TERMINAL TEXT ON command while using a
terminal that does not have the text capability, you must do the following to return
to normal operating procedures:

1. Press the PAl key to enter the CP environment.
2. Key in, in uppercase letters only, the command line:

TERMINAL TEXT OFF

Notes:

1. The 3270 text hardware feature is activated by a key, not a switch. Each time
you press the TEXT On/Off key, you reverse its setting. When the red light
on the text keyboard is illuminated, the text feature is on.

2. Compound characters, such as a .hw character/ -backspace/ -character
combination, are still entered and displayed as three characters. The screen
position occupied by the backspace character appears as a blank because the
character (X'16') is nondisplayable.

Chapter 2. VM/SP Environments and Mode Switching 2-11

2-12 VM/SP eMS User's Guide

Chapter 3. The CMS File System

CMS File Formats

The file is the essential unit of data in the eMS system. eMS disk files are unique
to the eMS system and cannot be read or written using other operating systems.
When you create a file in eMS, you name it using a file identifier. The file
identifier consists of three fields:

• filename (fn)
• filetype (ft)
• filemode (fro)

When you use eMS commands and programs to modify, update, or reference files,
you must identify the file by using these fields. Some eMS commands require you
to enter only the filename, or the filename and filetype; others require you to enter
the filemode field as well. This section contains information about the things you
must consider when you give your eMS files their identifiers, notes on the file
system commands that create and modify eMS files, and additional notes on using
eMS disks.

The eMS file management routines write eMS files on disk in fixed physical
blocks, regardless of whether they have fixed- or variable-length records. For most
of your eMS applications, you never IIeed to specify either a logical record length
and record format or block size when you create a eMS file.

When you create a file using one of the eMS editors, the file has certain default
characteristics, based on its filetype. Th~ special filetypes recognized by the editor,
and their applications, are discussed under "What are Reserved Filetypes"?

VSAM files written by eMS are in the same format as VSAM files written by
OS/VS or VSE and are recognized by those operating systems. You cannot,
however, use any eMS file system commands to read and write VSAM files,
because VSAM file formats are unique to the virtual storage access method.

How CMS Files Get Their Names

When you create a eMS file, you can give it any filename and filetype you wish.
The rules for forming filenames and filetypes are:

• The filename and file type can each be from one to eight characters.

• The valid characters are A-Z, a-z, 0-9, $, #, @, +, - (hyphen), : (colon), and
(underscore) .

When you enter a command line into the VM/SP system, VM/SP translates your
input line by either the user defined input table or by the uppercase table. See the
eMS SET INPUT command in the VM / SP CMS Command and Macro Reference.
If you do not have an input table, you can just enter the command line in lowercase
and VM/SP translates your input line into uppercase characters.

Note: When defining input characters be sure that you will not end up with
a fileid containing invalid characters.

Chapter 3. The CMS File System 3-1

The # and @ characters are line editing symbols in VM/SP; when you use them to
identify a file, you must precede them with the logical escape symbol ("). See
Appendix C, "Considerations for Line Mode Terminals" for a list of logical line
editing symbols.

The third field in the file identifier, the filemode, indicates the mode letter (A-Z)
currently assigned to the virtual disk on which you want the file to reside. When
you use the editor to create a file, and you do not specify this field, the file you
create is written on your A-disk, arid has a filemode letter of A.

The filemode letter, for any file, can change during a terminal session. For example,
when you log on, your virtual disk at address 191 is accessed as your A-disk, so a
file on that disk named SPECIAL EVENTS has a file identifier of:

SPECIAL EVENTS A

If, however, you later access another disk as your A-disk, and access your 191 as
your B-disk, then this file has a file identifier of:

SPECIAL EVENTS B

Duplicate Filenames or Filetypes

Using Asterisks (*) in Fileids

3-2 VM/SP eMS User's Guide

You can give the same filename to as many files on a given disk as you want, as
long as you assign them different filetypes. Or you can create many files with the
same file type but different filenames.

For the most part, filenames that you choose for your files have no special
significance to CMS. If, however, you choose a name that is the same as the name
of a CMS command, and the file that you assign this name to is an executable
module or EXEC procedure, then you may encounter difficulty if you try to
execute the CMS command whose name you duplicated.

For an explanation of how CMS identifies a command name, see "CMS Command
Search Order" later in this chapter.

Many CMS commands allow you to specify one or more of the fields in a file
identifier as an asterisk (*) or equal sign (=), which identify files with similar
fileids.

Some CMS commands that manipulate disk files allow you to enter the filename
and/ or filetype fields as an asterisk (*), indicating that all files of the specified
filename / file type are to be modified. These commands are:

COPYFILE
ERASE

RENAME
TAPE DUMP

For example, if you specify:

erase * test a

all files with a file type of TEST on your A-disk are erased. The LISTFILE
command allows you to request similar lists. If you specify an asterisk for a
filename or filetype, all of the files of that filename or filetype are listed. There is

Equal Signs in Output Fileids

listfile t* assemble

produces a list of all files on your A-disk with filenames beginning with the letter T
and with the filetype of assemble. The command:

listfile tr* a*

produces a list of all files on your A-disk with filenames beginning with the letters
TR and with filetypes beginning with the letter A.

The COMPARE, COPYFILE, RENAME, and SORT commands allow you to
enter output file identifiers as equal signs (=), to indicate that it is the same as the
corresponding input file identifier. For example:

copyfile myprog assemble b = = a

copies the file MYPROG ASSEMBLE from your B-disk to your A-disk, and uses
the same filename and file type as specified in the input fileid for those positions in
the output fileid.

Similarly, if you enter the command:

rename temp '* b perm = =

all files with a filename of TEMP are renamed to have filenames of PERM; the
existing filetypes of the files remain unchanged.

What Are Reserved Filetypes?

For the purposes of most CMS commands, the filetype field is used merely as an
identifier. Some filetypes, though, have special uses in CMS; these are known as
"reserved file types. "

Nothing prevents you from assigning any of the reserved filetypes to files that are
not being used for the specific CMS function normally associated with that filetype.

Some reserved filetypes also have special significance to the System Product editor
and the eMS editor. When you use either the XED IT or the EDIT command to
create a file with a reserved filetype, the editor assumes various default
characteristics for the file, such as record length and format, tab settings,
translation to uppercase, truncation column, and so on.

Filetypes for CMS Commands

Reserved filetypes sometimes indicate how the file is used in the eMS system: the
filetype ASSEMBLE, for example, indicates that the file is to be used as input to
the assembler; the filetype TEXT indicates that the file is in relocatable object
form, and so on. Many eMS commands assume input files of particular filetypes,
and require you to enter only the filename on'the command line. For example, if
you enter:

synonym test

eMS searches for a file with a filetype of SYNONYM and a filename of TEST. A
file named TEST that has any other filetype is ignored.

Chapter 3. The CMS File System 3-3

Filetypes

Some CMS commands create files of particular filetypes, using· the filename you
enter on,the command line. The language processors do this as well; if you are
recompiling a source file, but wish to save previous output files, you should rename
them before executing the command.>

Figure 3-1 lists the filetypes used by CMS commands and describes how they are
used. Figure 3-2 on page 3-7 lists the filetypes used by eMS/DOS commands.

In addition to these CMS filetypes, there are special filetypes reserved for use by
the language processors, which are IBM program products. These filetypes, and
the commands that use them, are:

Commands

COBOL, SYMDMP, TESTCOB
FORTRAN, FREEFORT, FTnnOOl,
TESTFORT

COBOL,FCOBOL,TESTCOB
FORTRAN, FORTGI, FORTHX, GOFORT,
TESTFORT

PLI, PLIOPT
RPGII
VSBASIC, VSBDATA

Flletype Commalid

AMSERV AMSERV

ASM370S ASM3705
GEN3705

ASSEMBLE. ASSEMBLE

AUXxxxx UPDATE

CNTRL UPDATE

COpy MACLIB

DIRECT DIRECT

EXEC EXEC
GEN3705
LISTFILE

GLOBALV DEFAULTS
GLOBALV

DOSPLI, PLIC, PLICR, PLIOPT
RPGII
VSBASIC

For details on how to use these filetypes, consult the appropriate program product
documentation.

Comments

Contains VSAM access method services control statements executed with the
AMSERV command.

Used by system programmers to generate the 3704/3705 control program.

Contains source statements for assembler language programs.

Points to files that contain UPDATE control statements for multiple updates.

Usts files that either contain UPDATE control statements or point to
additional files.

Can contain COPY control statements and macros or copy files to be added to
MACLIBs.

Contains entries for the VM/SP user directory file.The system programmer
controls this file.

Can contain sequences of CMS or user-written commands, with execution
. control statements.

Contains variables used by GLOBAL V.

Figure 3-1 (Part 1 of 3). Filetypes Used by eMS Commands

3-4 VM/SP eMS Uset's Guide

FHetype Command Comments

HELPCMS HELP Contains descriptive information for CP and CMS commands, messages,
HELPCP Restructured Extended Executor (REXX), EXEC 2, and EXEC statements,
HELPDEBU CMS editor and System Product editor subcommands, and menu lists and the
HELPEDIT SQL/Data System Program Product (S748-XXJ) (only if you have this
HELPEXC2 installed on your system.)
HELPEXEC
HELPHELP
HELPMENU
HELPMSG
HELPPREF
HELPREXX
HELP SET
HELPSQLD
HELPXEDI

LISTING AMSERV Listings are produced by the assembler, the language processors, and the
ASSEMBLE AMSERV and LOADLIB commands.
ASM370S
COBOL
DOSPLI
FCOBOL
LOADLIB
PLIOPT

LKEDIT LKED Contains the printer output from the LINK EDIT of a CMS text file or OS
object module.

LOADLIB FILEDEF Is a library created by the LKED command or the LOADLIB utility command.
GLOBAL The GLOBAL or FILEDEF command identifies the libraries that should be
LKED searched for program execution. NUCXLOAD loads a member of a CMS
LOADLIB LOADLIB library or an OS module library. OSRUN executes a member of a
NUCXLOAE CMS LOADLIB library or an OS module library. Query indicates the libraries
OSRUN that were affected by the GLOBAL command. ZAP is used to modify an
QUERY existing LOADLIB member.
ZAP

MACLIB GLOBAL Library members contain macro definitions or copy files; the MACLm
MAC LIB command creates the library, and lists, adds, deletes, or replaces members.

The GLOBAL command identifies which macro libraries should be searched
during an assembly or compilation.

MACRO MACLIB Contains macro definitions to be added to a.CMS macro library (MACLIB).

MAP INCLUDE Maps created by the LOAD and INCLUDE commands indicate entry point
LOAD locations; the MACLIB, TXTLIB, and TAPE commands produce MAP files.
MACLIB
TAPE
TXTLIB

Figure 3-1 (Part 1 of 3). Filetypes Used by CMS Commands

Chapter 3. The CMS File System 3-5

Filetype Command Comments

MODULE GENMOD MODULE files created by the GENMOD command are nonrelocatable
LOADMOD executable programs. The LOADMOD commands loads a MODULE file for
MODMAP execution; the MODMAP command displays a map of entry point locations.
NUCXLOAD NUCXLOAD loads a module into free storage and defines it as a nucleus

extension.

NAMES NAMEFIND Contains information regarding users with whom you communicate.
NAMES

NETLOG RECEIVE Contains records which log the transmission of files sent by or received by
SENDFILE you.

NOTEBOOK RECEIVE Contains notes sent to you or sent by you to to other users.
SEND FILE

SYNONYM SYNONYM Contains a table of synonyms for CMS commands and user-written EXEC and
MODULE files.

SCRIPT SCRIPT SCRIPT text processor input includes data and SCRIPT control words.

TEXT ASSEMBLE TEXT files contain relocatable object code created by the assembler and
INCLUDE compilers. The LOAD and INCLUDE commands load them into storage for
LOAD execution. The TXTLIB command manipulates libraries of TEXT files.
TXTLIB

TXTLIB GLOBAL Library members contain relocatable object code. The TXTLIB command
TXTLIB creates the library, and lists or deletes existing members. The GLOBAL

command identifies TXTLIBs to search.

UPDATE UPDATE Contains UPDATE control statements for single updates applied to source
programs.

UPDLOG UPDATE Contains a record of additions, deletions, or changes made with the UPDATE
command.

UPDTxxxx UPDATE Contains UPDATE control statements for multilevel updates.

ZAP ZAP Contains control records for the ZAP command, which is used by system
support personnel.

Figure 3-1 (Part 3 of 3). Filetypes Used by CMS Commands

3-6 VM/SP eMS User's Guide

Filetype Command Comments

COpy , MAC LIB When the SSERV command copies books or macros from DOS source
SSERV statement libraries, the output is written to CMS COpy files, which can be

added to CMS macro libraries with the MACLIB command.

DOSLIB DOSLIB DOS core image phases are placed in a DOSLIB by linkage editor, invoked
DOSLNK with the DOSLNK command. The GLOBAL command identifies DOSLIBs to
FETCH be searched when the FETCH command is executed.
GLOBAL

DOSLNK DOSLKED Contains linkage editor control statements for input to the CMS/DOS linkage
editor.

ESERV ESERV Contains input control statements for the ESERV utility program.

EXEC LISTIO The LISTIO command with the EXEC option creates the $LISTIO EXEC that
lists system and programmer logical unit assignments.

LISTING ASSEMBLE Listings contain processor output ,from the ESERV command, and,compiler
ESERV output from the assembler and language processors.

MACRO ESERV Contains ~YSPCH output from the ESERV program, suitable for addition to a
MACLIB CMS MACLIB file.

MAP DOSLIB The DSERV command creates listings of the directories of DOS libraries. The
DOSLKED DOSLIB command with the MAP option produces a list of DOSLIB members.
DSERV The linkage editor map from the DOSLKED command is written into a MAP

file.

PROC PSERV The PSERV command copies procedures from DOS procedure libraries into
CMS PROC files.

TEXT ASSEMBLE Object decks created by the assembler or compilers are written into TEXT
DOSLKED files. The RSERV command creates TEXT files from modules in DOS
RSERV relocatable libraries. TEXT files can also be used as input to the linkage

editor.

Figure 3-2. Filetypes Used in eMS/DOS

Output Files: TEXT and LISTING

Output files from the assembler and the language processors are logically related to
the source programs by their filenames. Some of these files are permanent and
some are temporary. For example, if you issue the command:

assemble myfile

CMS locates a file named MYFILE with a filetype of ASSEMBLE and the system
assembler assembles it. If the file is on your A-disk, then when the assembler
completes execution, the permanent files you have are:

MYFILE ASSEMBLE A1
MYFILE TEXT A1
MYFILE LISTING A1

Chapter 3. The CMS File System' 3-7

Filetypes for Temporary Files

CMSUTI Files

3-8 VM/SP eMS User's Guide

where the TEXT file contains the object code resulting from the assembly, and the
LISTING file contains the program listing generated by the assembly. If any
TEXT or LISTING file with the same name previously existed, it is erased. The
source input file, MYFILE ASSEMBLE AI, is neither erased nor changed.

Because these files are CMS files, you can use the editor to examine or modify
their contents. If you want a printed copy of a LISTING file, you can use the
PRINT command to print it. If you want to examine a TEXT file, you can use the
TYPE or PRINT command specifying the HEX option.

Note: If a TEXT file contains control changes for the terminal, the edit
lines may not be displayed in their true form. Therefore, it is suggested you
do not use the editor for TEXT files, because the results are unpredictable.
Instead, use the ,TYPE or PRINT commands with the HEX option to
display TEXT decks. Put TEXT decks into a TXTLIB and ZAP the
TXTLIB to modify the TEXT deck.

The filetypes of files created by the assembler and language processors for use as
temporary workfiles are:

SYSUTI
SYSUT2
SYSUT3
SYSUT4

SYSOOI
SYS002
SYS003

Figure 3-3. FOetypes for Temporary Work FOes

SYS004
SYS005
SYS006

CMS handles all SYSUTx and SYSOOx files as temporary files.

The CMS AMSERV command, executing VSAM utility functions, uses two
workfiles that have filetypes of LDTFDIl and LDTFDI2.

The CMS RECEIVE command, when receiving files in DISK DUMP format,
creates a temporary file with the fileid AAAA BBBB A.

Disk space is allocated for temporary files on an as-needed basis. They are erased
when processing is complete. If a program you are executing is terminated before
completion, these workfiles may remain on your disk. You can erase them.

The CMSUTI filetype is used by CMS commands that create files on your CMS
disks. The CMSUTI file is used as a workfile and is erased when processing is
complete. When a command fails to complete execution properly, the CMSUTI
file may not be erased. CMSUTI files are reserved for system usage, and use of
these files may cause unpredictable results. The commands, and the filenames they
assign to files they create, are listed below.

Filetypes for Documentation

Command
COPYFILE
DISK LOAD
EDIT
INCLUDE
LOAD
MACLIB
READ CARD
TAPE LOAD
UPDATE

Filename
COPYFILE
DISK
EDIT
DMSLDR
DMSLDR
DMSLBM
READCARD
TAPE
fn (the filename of the UPDATE file)

There are two CMS reserved filetypes for which the System Product editor and
CMS editor accept (by default) uppercase and lowercase input data. These are
MEMO and SCRIPT.

• You can use MEMO files to document program notes or to write reports.

• The SCRIPT filetype is used by the SCRIPT command. This command
invokes a text processor that is part of the IBM Document Composition
Facility program product.

Filemode Letters and Numbers

The filemode field of a CMS file identifier has two characters: the filemode letter
and the filemode number.

• The filemode letter is established by the ACCESS command and specifies the
virtual disk on which a file resides: A through Z.

• The filemode number is a number from 0 to 6, which you can assign to the file
when you create it or rename it; if you do not specify it, the value defaults to 1.

How you access your disks and what filemode letters you give them with the
ACCESS command depends on how you want to use the files that are on them.

For most of the reading and writing you do of files, you use your A-disk, which is
also known as your primary disk. This is a read/write disk. You may access other
disks in your configuration, or access linked-to disks, in read-only or read/write
status, depending on whether you have a read-only or read/write link.

When you load CMS (with the IPL command), your virtual disk at address 191 is
accessed for you as your A-disk. Your virtual disk at address 190 (the system disk)
is accessed as your S-disk; and the disk at 19E is accessed as an extension of your
S-disk, with a mode letter of Y. The S-disk and Y-disk are accessed for only mode
S2 and Y2 files, thus:

access 190 sIs * * S2
access 19E Y/S * * Y2

In addition, if you have a disk defined at address 192, it is accessed for you as your
D-disk. If the 192 disk has not been formatted, CMS will do it automatically and
label the minidisk 'SCRTCH'.

Chapter 3. The CMS File System 3-9

How Extensions Are Used

3-10 VM/SP eMS User's Guide

If ACCESS is the first command issued after an IPL of the CMS system, only the
A-disk is not automatically defined. Another ACCESS command must be issued to
define the A-disk.

The actual letters you assign to any other disks (and you may reassign the letters A,
D, and Y), is arbitrary; but it does determine the CMS search order, which is the
order in which CMS searches your disks when it is looking for a file. The order of
search (when all disks are being searched) is alphabetical: A through Z. If you
have duplicate file identifiers on different disks, you should check your disk·search
order before issuing commands against that filename to be sure that you Will get
the file you want. You can find out the current search order for your virtual disks
by issuing the command:

query search

You can also access disks as logical extensions of other disks, for example:

access 235 b/a

The" / A" indicates that the B-disk is to be a read-only extension of the A-disk,
and the A-disk is considered the "parent" of the B-disk. A disk may have many
extensions, but only one level of extension is allowed. If you access an extension
A-disk containing no files, the access fails.

If you have a disk accessed as an extension of another disk, the extension disk is
automatically read-only, and you cannot write on it. You might access a disk as its
ow~ extension, therefore, to protect the files on it, so that you do not accidentally
write on it. For example:

access 235 bib

Another use of extensions is to extend the CMS search order. If you issue a
command requesting to read a file, for example:

type alpha plan

eMS searches your A-disk for the file named ALPHA PLAN and if it does not
find it, searches any extensions that your A-disk may have. If you have a file
named ALPHA PLAN on your B-disk but have not accessed it as an extension of
your A-disk, CMS will not find the file, and you will have to reenter the command:

type alpha plan b

Additionally, if you issue a CMS command that reads and writes a file, and the file
to be read is on an extension of a read/write disk, the output file is written to the
parent read/write disk. The XEDIT command isa good example of this type of
command. If you have a file named FINAL LIST on a B-disk extension of a
read/write A-disk, and if you invoke the editor to modify the file with the
command:

xedit final list

after you have made modifications to the file, the changed file is written onto your
A-disk. The file on the B-disk remains unchanged.

Accessing and Releasing Read-Only Extensions

When you access a disk as a read-only extension, it remains an extension of the
parent disk as long as both disks are still accessed. If either disk is released, the
relationship of parent disk/extension is terminated.

If the parent disk is released, the extension remains accessed and you may still read
files on it. If you access another disk at the mode letter of the original parent disk,
the parent/extension relationship remains in effect.

If you release a read-only extension and access another disk with the same mode
letter, it is not an extension of the original parent disk unless you access it as such.
For example, if you enter:

access 198 cia
release c
access 199 c

the C-disk at virtual address 199 is not an extension of your A-disk.

When to Specify Filemode Letters: Reading Files

When you request CMS to access a file, you have to identify it so that CMS can
locate it for you. The commands that expect files of particular filetypes (reserved
filetypes) allow you to enter only the filename of the file when you issue the
command. When you execute any of these commands or execute a MODULE or
EXEC file, CMS searches all of your accessed disks (using the standard search
order) to locate the file. Some CMS commands that perform this type of search
are:

AMSERV
ASSEMBLE
DOSLIB
EXEC

GLOBAL
LOAD
LOAD MOD
MACLIB

MODMAP
RUN
TXTLIB

Some CMS commands require you to enter tl}e filename and filetype to identify a
file. You may specify the filemode letter; if you do not specify the filemode, CMS
searches only your A-disk and its extensions when it looks for the file. If you do
specify a filemode letter, the disk you specify and its extensions are searched for
the file. Some commands you can use this way are:

EDIT
FILEDEF
PRINT

PUNCH
STATE
SYNONYM

TAPE
TYPE
UPDATE

There are some CMS commands that do not search extensions of disks when
looking for files. They include:

ERASE
FILELIST
LISTFILE

You must explicitly enter the file mode if you want to use these commands to list or
dump files that are on extensions.

The following commands search every accessed read-only and read-write disk.

Chapter 3. The CMS File System 3-11

Using Asterisks and Equal Signs

NAMES
NAMEFIND

For some CMS commands, if you specify the filemode of a file as an asterisk, it
indicates that you either do not know or do not care what disk the file is on and
you want CMS to locate it for you. For example, if you enter:

listfile myfile test *

the LISTFILE command responds by listing all files on your accessed disks named
MYFILE TEST. When you specify an asterisk for the filemode of the COPYFILE,
ERASE, or RENAME commands, CMS locates all copies of the specified file. For
example:

rename temp sort * good sort =

renames all files named TEMP SORT to GOOD SORT on all of your accessed
read/write disks. An equal sign (=) is valid in output fileids for the RENAME and
COPYFILE commands.

For some commands, when you specify an asterisk for the filemode of a file, CMS
stops searching as soon as it finds the first copy of the file. For example:

type myfile assemble *

If there are files named MYFILE ASSEMBLE on your A-disk and C-disk, then
only the copy on your A-disk is displayed. The commands that perform this type of
search are:

COMPARE
DISK DUMP
EDIT
FILEDEF

PRINT
PUNCH
RUN
SORT

STATE
SYNONYM
TAPE DUMP
TYPE

For the COMPARE, COPYFILE, RENAME, and SORT commands, you must
always specify a filemode letter, even if it is specified as an asterisk.

When to Specify Filemode Letters: Writing Files

3-12 VM/SP eMS User's Guide

When you issue a CMS command that writes a file onto one of your virtual disks,
and you specify the output filemode, CMS writes the file onto that disk. The
commands that require you to specify the output filemode are:

COPYFILE
RENAME
SORT

The commands that allow you to specify the output filemode, but do not require it,
are:

FILEDEF
GENMOD
READ CARD

TAPE LOAD
TAPPDS
UPDATE

When you do not specify the filemode on these commands, CMS writes the output
files onto your A-disk.

Some CMS commands that create files always write them onto your A-disk. The
LOAD and INCLUDE commands write a file named LOAD MAP AS. The

LISTFILE command creates a file named CMS EXEC, on your A-disk. The
CMS/DOS commands DSERV, ESERV, SSERV, PSERV, and RSERV also write
files onto your A-disk.

Other commands that do not allow you to specify the filemode, write output files
either:

• To the disk from which the input file was read, or
• To your A-disk, if the file was read from a read-only disk

These commands are:

AMSERV
MACLIB
TXTLIB
UPDATE

The SORT command also functions this way if you specify the output filemode as
an asterisk (*).

In addition, many of the language processors, when creating work files and
permanent files, write onto the first read/write disk in your search order, if they
cannot write on the source file's disk or its parent.

How Filemode Numbers are Used

Filemode 0

I Filemode 1

Filemode 2

Whenever you specify a file mode letter to reference a file, you can also specify a
filemode number. Since a filemode number for most of your files is 1, you do not
need to specify it. The filemode numbers 0 through 6 are discussed below.
Filemode numbers 7 through 9 are reserved .lor IBM use.

A filemode number of 0 assigned to a file makes that file private. No other user
may access it unless they have read/write access to your disk. Under normal
circumstances; if someone links to your disk in read-only mode and requests a list
of all the files on your disk, the files with a file mode of 0 are not listed.

The DDR command will allow you to copy the minidisk from one disk to another,
and therefore, the filemode 0 files. Use a read share password to protect minidisks
with private files when using ACCESS.

I Filemode 1 is used for reading and writing files. It is the default filemode.

Filemode 2 is essentially the same, for the purposes of reading and writing files, as
filemode 1. Usually a filemode of 2 is assigned to files that are shared by users
who link to a common disk, like the system disk. Since you can access a disk and
specify which files on that disk you want to access, files with a filemode of 2
provide a convenient subset of all files on a disk. For example, if you issue the
command:

access 489 e/a * * e2

you can only read files with a filemode of 2 on the disk at virtual address 489.

Chapter 3. The eMS File System 3-13

FHemode 3

Filemode·4

FHemode 5

Fllemode 6

Files 'with a filemode of 3 are erased·after they are read. If you create a file with a
filemode of 3 and then request that it be printed, the file is printed, and then
erased. You can use this filemode if you write a program or EXEC procedure that
creates files that you do not want to maintain copies of on your virtual disks. You
can create the file, print it, and not have to worry about erasing it later.

The language processors and some CMS commands create work files and give
these work files a filemode of 3.

Note: 'A filemode of 3 should not be used. with' EXECs. Depending on
what commands are issued within it, an EXEC with a filemode of 3 may be
erased before it completes execution.

Files with a filemode of 4 are in as simulated data set format. These files are
created by OS macros in programs running in CMS.You specify that a file created
by a progl-am isto have OS simulated data set format by specifying a filemode of 4
when you issue theFILEDEF command for the output file. If you do not specify a
filemode of 4, the output file is created in eMS format.

You can find more details about OS simulated data sets in Chapter 9, "Developing
OS programs under CMS" on page 9-1.

Note: There are no filemode numbers reserved for DOS or VSAM data
sets, since CMS does not simulate these file organizations.

This filemode number is the same, for purposes of reading and writing, as filemode
1. You can assign a filemode of 5 to files that you want to maintain as logical
groups, so that you can manipulate them in groups. For example, you can reserve
the filemode of 5 for allfiles that you are retaining for a certain period of time;
then, when you want to erase them, you could issue the command:

erase ** as

The file mode number 6 indicates that the "update-in-place" attribute of a CMS file
is in effect. This means that the existing records of a file are written back to their
previous location on disk rather than in a new slot. This only applies to files
located on 512-, lK-,2K-, or 4K-byte block formatted minidisks. To take
advantage of the '~update-in ... place" capability, the FSWRITE macro must be used,
whether explicitly by the user or implicitly by the system.)

Note: For a variable format file, "update-in-place" applies only if a record
is replaced by a record of the same length.

When To Enter Filemode Numbers

You can assign filemode numbers when you use the following commands:

3-14 VM/SP eMS User's Guide

COPYFILE

DLBL,
FILEDEF

GENMOD

READ CARD

I RECEIVE

RENAME

SORT

, XEDIT

You can assign a filemode number when you create a new file with the
COPYFILE command.

When you assign file definitions to disk files for programs or CMS command
functions, you can specify a file mode number.

You can specify a filemode number on the GENMOD command line. To
change the filemode number of an existing MODULE file, use the
RENAME or COPYFILE commands.

You can assign a file mode number when you specify a file identifier on the
READCARD command line or on a READ control card.

You can assign a filemode number when receiving a file from your virtual
reader.

When you specify the file ids on the RENAME command, you can specify
the filemode numbers for the input and/or output files. To change only the
filemode number of an existing file, you must use the RENAME command.
For example:

RENAME test module a1 = = a2

changes the filemode number of the file TEST MODULE A from 1 to 2.

You can specify filemode numbers for the input and/or output fileids on the
SORT command line.

You can assign a filemode number when you create a file with the System
Product editor. To change the filemode number of an existing file, use the
RENAME or COPYFILE commands, or use the SET FMODE
subcommand when you are in the edit environment.

Managing Your eMS Disks

The number of files you can write on a CMS disk depends on both the size of the
disk and the size of the files that it contains. You can find out how much space is
being used on a disk by using the QUERY DISK command. For example, to see
how much space is on your A-disk, you would enter:

query disk a

The response may be something like this:

Chapter 3. The CMS File System 3-15

LABEL cuu M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
MYDISK 191 A R/W 5 3330 1024 171 1221-92 107 132e

eMS File Directories

3-16 VM/SP eMS User's Guide

When a disk is becoming full, you should erase whatever files you no longer need,
or dump to tape files that you need to keep but do not need to keep active on disk.

When you are executing a command or program that writes a file to disk, and the
disk becomes full in the process, you receive an error message, and you have to try
to clear some space on the disk before you can attempt to execute the command or
program again. To avoid the delays that such situations cause, you should try to .
maintain an awareness of the usage of your disks. If you cannot erase any more
files from your disks, you should contact installation support personnel about
obtaining additional read/write CMS disk space.

Each CMS disk has a master file directory that contains entries for each of the
CMS files on the disk. When you access a disk, information from the master file
directory is brought into virtual storage and written into a user file directory. The
user file directory has an entry for each file that you may access. If you have
accessed a disk specifying only particular files, then the user file directory contains
entries only for those files.

If you have read/write access to a disk, then each time you write the file onto disk
the user file directory and master file directory are updated to reflect the current
status of the disk. If you have read/write access to a disk and the FSCLOSE
macro is issued, the user file directory is updated. When there are rio open files on
the disk, the master file directory is updated to reflect the current status of the files.
If you have read-only access to a disk, then you cannot update the master file
directory or user file directory. If you access a read-only disk while another user is
writing files onto it, you may need to periodically reissue the ACCESS command
for the disk, to obtain a fresh copy of the master file directory.

Note: You should never attempt to write on a disk at the same time as
another user.

The user file directory remains in virtual storage until you issue the RELEASE·
command specifying the mode letter or virtual address of the disk. If you detach a
virtual disk (with the CP DETACH command) without releasing it, CMS does not
know that the disk is no longer part of your virtual machine. When you attempt to
read or write a file on the disk CMS assumes that the disk is still active (because
the user file cliIectory is still in storage) and encounters an error when it tries to
read or write the file.

A similar situation occurs if you detach a disk and then add a new disk to your
virtual machine using the same virtual address as the disk you detached. For
example, if you enter the following sequence of commands:

cp link user1 191 195 rr rpass
access 195 d
cp detach 195
cp link user2 193 195 rr rpass
listfile * * d

the LISTFILE command produces a list of the files on USER1's 191 disk; if you
attempt to read one of these files, you receive an error message. You must issue
the ACCESS command to obtain a copy of the master file directory for USER2's
193 disk.

Note: The passwo.rd canno.t be entered o.n the command line if the
passwo.rd suppressio.n facility was specified when yo.ur system was installed.

The entries in the master file directo.ry are sorted alphamerically by filename and
filetype, to. facilitate the CMS search fo.r particular files. When yo.U are updating
disk files, the entries in the user file directo.ry and ma~ter file directory tend to.
beco.me unso.rted as files are created, updated, and erased. When you use the
RELEASE co.mmand to. release a read/write disk, the entries are so.rted and the
master file directo.ry is rewritten. If yo.U o.r any other user subsequently access the
disk, the file search may be mo.re efficient.

CMS Command Search Order

When yo.U enter a co.mmand line in the CMSenvironment, eMS has to. locate the
co.mmand to. execute. If yo.U have EXEC nr MODULE files o.n any o.f yo.ur
accessed disks, CMS treats them as co.mmands; also., they are knnwn as
user-written cnmmands.

As snnn as the co.mmand name is fnund, the search sto.PS and the co.mmand is
executed. The search o.rder is:

1. Search fo.r a file with filetype EXEC nn any currently accessed disk. CMS uses
the standard search order (A thro.ugh Z.)

2. Search fo.r a valid name o.n any currently accessed disk, acco.rding to. current
SYNONYM file definitio.ns in effect.

3. Search fo.r a nucleus extensio.n command if the high o.rder byte o.f register 1 is
no.t equal to. X'03' o.r X'04'.

4. Search fo.r a co.mmand in the transient area.

5. Search fo.r a nucleus-resident co.mmand.

6. Search fo.r a file with filetype MODULE o.n any currently accessed disk.

7. Search fo.r a valid abbreviatio.n o.r truncation o.f a nucleus extension.

8. Search fo.r a valid abbreviatio.n o.r truncatio.n o.f a co.mmand in the transient
area.

9. Search fo.r a valid abbreviatio.n o.r truncation o.f a co.mmand in the nucleus.

10. Search fo.r a valid abbreviatio.n o.r truncatio.n of any o.ther CMS command.

11. Search fo.r a CP co.mmand.

12. Search fo.r a valid abbreviatio.n o.r truncatio.n of a CP command.

Fo.r example, if yo.U create a co.mmand module that has the same name as a CMS
nucleus-resident co.mmand, yo.ur co.mmand mo.dlde canno.t be executed, since CMS
Io.cates the nucleus-resident co.mmand first, and executes it. When a user-written
co.mmand has the same name as a CMS co.mmand module abbreviation, certain
erro.r messages may indicate the CMS co.mmand name, rather than the pro.gram
name;

Chapter 3. The CMS File System 3-17

Figure 3-4 illustrates details of the command search order.

r
EXEC
search

L
r

nucleus
extension,
transient,

or
nucleus
resident
command

seallh

L

CMS
module

CP
search

La.

Figure 3-4. How eMS Searches for the Command to Execute

3-18 VM/SP eMS User's Guide

Execute the file
and return control
to CMS

Expand the name to
the full.real name,
execute it, and
return control to CMS

Execute the nucleus
extension and return
control to CMS

Execute the file
and return
control to CMS

Execute the module
and return
control to CMS

Execute the file
and return
control to CMS

Expand the name
to the full real name,
execute it, and
return control to CMS

Expand the name
to the full real name,
execute it, and
return control to CMS

Execute the command
and return control
to CMS

CMS Command Execution Characteristics

Command Code

ACCESS T
AMSERV U
ASSEMBLE U
ASSGN T
CATCHECK U
CMDCALL N
CMSBATCH U
COMPARE T
CONWAIT N
COPYFILE U,S

, l

CP N
DDR U,S
DEBUG N
DEFAULTS E
DESBUF N
DISK T
DLBL T
DOSLIB U
DOSLKED U
DOSPLI E,U
DROPBUF N
DSERV U
EDIT V,S
ERASE N
ESERV E
EXEC N
EXECIO N
EXECOS N
EXECUPDT E
FCOBOL E,U
FETCH N
FILEDEF T

Following is an alphabetical list of the CMS commands and their execution
characteristics. The "Code" column indicates the execution characteristics of the
command.

Code Meaning

E indicates that this command is an EXEC.

N indicates that this command executes in the nucleus or is a
nucleus extension. -.

S indicates that this command issues the STRINIT macro, causing
a reset of the OS free storage pointers.

T indicates that this command executes in the transient area.

U indicates that this command executes in th~ user pr0gram area.

Figure 3-5. CMS Command Execution Characteristics

Command Code

FILELIST E
FINIS N
FORMAT U
GENDIRT T
GENMOD N
GLOBAL T
GLOBALV T
HELP N,S
IDENTIFY T
IMMCMD N
INCLUDE N
IOCP U
LABELDEF T
LISTDS U
LISTFILE N
LISTIO T
LKED U
LOAD N
LOAD LIB U,S
LOADMOD N
MACLIB U
MAKEBUF N
MODMAP U
MOVEFILE U,S
NAMEFIND N
NAMES E
NOTE E
NUCXDROP T
NUCXLOAD T
NUCXMAP T
OPTION T
OSRUN U

Chapter 3. The CMS File System 3-19

Command

PEEK
PRINT
PSERV
PUNCH
QUERY
RDR
RDRLIST
RECEIVE
READCARD
RELEASE
RENAME
RESERVE
RSERV
RUN
SENDFILE
SENTRIES
SET
SETPRT
SORT
SSERV
START
STATE
STATEW
SVCTRACE
SYNONYM
TAPE
TAPEMAC
TAPPDS
TELL
TXTLIB
TYPE
UPDATE
XEDIT

Code

E
T
U
T
N
T
E
E
T
T
N
T
U
E
E
N
T,S
T
U,S
U
N
N
N
T
T
T
U
U
E
U
T
U
N,S

Displaying a List of Your eMS FDes

3-20 VM/SP eMS User's Guide

Use the FILELIST command to display information about your CMS files residing
on accessed disks. In a full screen environment, FILELIST provides you with the
same information as the LISTFILE command, but also allows you to edit and issue
commands from the list. You can issue XEDIT subcommands to manipulate the
list itself. Figure 3-6 is a sample FILELIST list.

ZOOKEEP FILELIST A1 V 108 TRUNC=108 SIZE=418 LINE=1 COL=1 ALT=O
Lrecl Records Blocks Date Time Cmd Filename Filetype Fm Format

ALL NOTEBOOK A2 V
ANIMAL DATA A1 V
BANANA DATA A1 V
BEAR NOTE A1 V
HONEY DATA A1 V
LION NOTE A2 V
TIGER NOTE A1 V
ZOOKEEP NETDATA A1 V

1= Help 2= Refresh 3= Quit
7= Backward 8= Forward 9= FL /n

====>

Figure 3-6. Sample FILELIST Screen

Finding Files in Your FILELIST List

120 277 10 9/24/82 9:14:02
95 34 2 10/04/82 21:12:04
95 29 2 10/04/82 20:58:07

107 281 10 10/04/82 17:59:00
92 101 4 10/02/82 15:33:05
75 28 1 9/25/82 12:10:03
26 7 1 9/23/82 16:50:06
80 489 30 8/26/82 16:05:08
4= Sort(type) 5= Sort(date) 6= Sort(size)

10= 11= XEDIT 12= Cursor

XEDIT

If you have many files in your list, the list may take up more than one screen. To
find files in your FILELIST list, you can do any of the following:

• Scroll through the list using the PF keys.

Key
PF7
PF8

Function
Scrolls backward one full screen.
Scrolls forward one full screen.

• Rearrange the list using one of the following keys:

Key
PF4
PF5

PF6

Arrangement
Orders the list by filetype.
Orders the list by date (newest to oldest). This is how the list is
initially arranged.
Orders the list by size (largest to smallest).

• Use the XEDIT subcommand LOCATE if you know the filename and/or
filetype of the file that you are looking for. You enter the LOCATE command
at the bottom of the Screen and then press the ENTER key. For example:

====> locate/banana datal

If BANANA DATA is located, the line containing it becomes the first line on
the screen.

• Rearrange the list by entering one of the following synonyms on the command
line.

SNAME Sorts the list alphabetically by filename, filetype, and filemode.

STYPE Sorts the list alphabetically by filetype, filename, and filemode.

SMODE Sorts the list by filemode, filename, and filetype.

SRECF Sorts the list by record format, filename, filetype, and filemode.

Chapter 3. The CMS File System 3-21

SLREC

SSIZE

SDATE

Sorts the list by logical record length and then by size (greatest to
least).

Sorts the list by number of blocks and number of records (greatest
to least).

Sorts the list by year, month, day, and time (most recent to
oldest).

Using FILELIST to List Some of Your Files

FILELIST allows you to obtain various lists of the files on your disks. You can ask
for a list of files that have the same filename or filetype or all of the files that begin
with a certain letter. The abbreviation for FILELIST is FILEL. Following are
various ways that you might use the FILELIST command:

file I

filel * * b

filel bear *

filel * data

filel * * a1

Displays a lists of the files on your A-disk.

Displays a lists of the files on your accessed B-disk.

Displays a list of of the files on your A-disk with a filename of
BEAR.

Displays a list of files on your A-disk with DATA as the
filetype.

Displays a list of the files with a file mode number 1 on your
A-disk.

Erasing Files from FILELIST

Use the DISCARD command to erase from disk a file that is displayed in the list.
DISCARD is equivalent to the CMS command ERASE. DISCARD can either be
typed in the command area of the line that describes the file you want discarded, or
it can be entered from the command line (at the bottom of the screen). DISCARD
can only be used while in FILELIST, RDRLIST, and PEEK commmand
environments.

Listing your Files with the LISTFILE command

3-:22 VM/SP eMS User's Guide

You can use the LISTFILE command to list information about your eMS disk
files. For example, entering:

listfile * data

lists the files on your A-disk with the filetype of DATA. For example:

ANIMAL
BANANA
HONEY

DATA
DATA
DATA

A1
A1
A1

If you want more information than just the fileids, you can use one of the
information request options for LISTFILE. For example, entering:

listfile * data (label

returns a list with more than just the filelid. For example:

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS
2
2
4

DATE TIME LABEL
ANIMAL DATA A1 V 95 34 10/04/82 21:12:04 ZKP191

10/04/82 20:58:07 ZKP191
10/02/82 15:33:05 ZKP191

BANANA DATA A1 V 95 29
HONEY DATA A1 V 92 101

Comparing Contents of Files

Copying Files

Renaming Files

Using Synonyms

As with the FILELIST command, you can vary what you list with the LISTFILE
command. Remember you only need to enter L, the minimum truncation for
LISTFILE. Following, are various ways that you might use the LISTFILE
command:

Lists the files on your A-disk.

1* * b Lists the files on your accessed B-disk.

listf bear * Lists the files on your A-disk with a filename of BEAR.

1 * data Lists the files on your A-disk with DATA as a filetype.

list * * al Lists the files with a filemode number 1 on your A-disk.

To compare the contents of two files to see if they are identical, use the
COMPARE command. For example:

compare labor stat a1 labor stat b1

Any records in these files that do not match are displayed at your terminal. The
format of the COMPARE command is documented in the VM / SP CMS Command
and Macro Reference.

The COPYFILE command, in its simplest form, copies a file from one virtual disk
to another. For example:

copyfile linda assemble b pat assemble a

You can change the file identifier of a file with the RENAME command.

rename test file a1 good file a1

You can use RENAME to modify filemode numbers, for example:

rename * module a1 = = a2

changes the filemode numbers on all MODULE files on the A-disk that have a
mode number of 1 to a mode number of 2. Remember that you cannot use
RENAME to move a file from one disk to another. You must use the COPYFILE
command to change filemode letters.

By using the SYNONYM and the SET ABBREV commands, you can control what
command names, synonyms, or truncations are valid in CMS. For example, you
could create a file named MYSYN SYNONYM which contains the following
records:

Chapter 3. The CMS File System 3·23

3-24 VM/SP eMS User's Guide

PRINT PRT 1
RELEASE LETGO 4
FILELIST FL 2

The first column specifies an existing CMS command, module, or EXEC name.
The second column specifies the alternate name or synonym that you want to use.
The third column is a count field that indicates the minimum number of characters
of the synonym that can be used to truncate the name. Using this file, after you
enter the command:

synonym mysyn

you can use PRT, LETGO, and FL in place of the corresponding CMS command
names. Also, if the ABBREV function is in effect, (it is the default; you can make
sure it is in effect by issuing the command SET ABBREV ON), you can truncate
any of your synonyms to the minimum number of characters specified in the count
field of the record (that is, you could enter P for PRINT and LETG for
RELEASE). To invoke your synonym table at the beginning of every terminal
session, enter the SYNONYM MYSYN command (or your own synonym table
name) into your PROFILE EXEC.

Note: An EXEC procedure having a synonym defined for it can be
invoked by its synonym if implied EXEC (IMPEX) function is on.
However, within an EXEC procedure, only the EXEC filename can be
used. A synonym is not recognized within an EXEC because the synonym
tables are not searched during EXEC processing.

\ Chapter 4. What You Can Do with CMS Commands

This section provides an overview of some of the operations you might need to
perform. The commands are not presented in their entirety, nor is a complete
selection of commands represented.

As you glance through this section you should have an understanding of the kinds
of commands available to you, so that when you need to perform a particular task
using CMS you may have an idea of whether it can be done, and know what
command to reference for details.

For complete lists of the CP and CMS commands available, see Figure 0-1 and
Figure B-2.

Chapter 4. What You Can Do with CMS Commands 4-1

Beginning and Ending Your Term;nal Session

Task

Begin your terminal session

End your terminal session

4-2 VM/SP eMS User's Guide

Your terminal session starts when you logon (with CP LOGON) and ends when
you logoff (CP LOGOFF). When you know that you are only going to be away
from your terminal for a short while, you can disconnect (CP DISCONN). When
you reconnect (with CP LOGON) the status of your virtual machine is the same as
you left it.

Command(s)

CPLOGON

CPLOGOFF
CPDISCONN

Description

Chapter 1

Chapter 1
Chapter 1

The command formats and usage notes for the commands; DIS CONN, LOGOFF,
and LOGON, are documented in the VM/SP CP Command Reference for General
Users.

Tailoring Your System

Action

At the start of every terminal session you can automatically customize your system
with the commands invoked by your PROFILE EXEC. Your PROFILE EXEC
can include commands to set your PF keys, access disks, and access your synonym
table.

If you are prone to typing errors, the RETRIEVE function provides you with a
method of correcting errors without retyping the entire input. The RETRIEVE
function is assigned to a PF key so that when the key is pressed, your previously
entered line is retrieved.

When you are communicating with others on your computer, use the NAMES
command to assign nicknames. The nicknames can be used with the SENDFILE
and TELL commands, because both commands reference your NAMES file. You
can create your own command to execute a series of commands by writing an
EXEC.

Description

Keep information about others with whom
you communicate

Command(s)

.NAMES Chapter 7

Set your program function (PF) keys

Assign a PF key to retrieve previously
entered lines

Specify defaults for the commands:
FILELIST, NOTE, PEEK, RDRLIST,
RECEIVE, and SENDFILE

Assign synonyms for system and your own
commands

Tailor your System at the start of every
session via your PROFILE EXEC

Write your own command that executes
several commands or programs

Create your own Immediate command

CP SETPFnn

CP SET PFnn RETRIEVE

DEFAULTS

SYNONYM

XED IT and the System Product
interpreter

XEDIT and the System Product
interpreter

IMMCMD

Chapter 1

Chapter 1

Chapter 7

Chapter 3

Chapter 16

Chapter 15

Chapter 8

The CP SET command is documented in the VM / SP CP Command Reference for
General Users. The command formats and usage notes for the following CMS
commands:

DEFAULTS
IMMCMD
NAMES
SYNONYM
XEDIT

are documented in the VM/SP CMS Command and Macro Reference.

Chapter 4. What You Can Do with CMS Commands 4-3

I Requesting Information

Inquiring about:

Terminal characteristics

Files on your disk

Files on your OS or DOS disks

Files in your reader

Your spool files

Your virtual disks

Your virtual machine

Your print files

Other users

Your reader, printer, and punch

4-4 VM/SP eMS User's Guide

You can use CP and CMS commands to inquire about your terminal, virtual
machine, disks, data files, and other users.

command(s) Description

CP QUERY SCREEN Chapter 1
CPQUERYSET Chapter 1
CP QUERY TERMINAL Appendix C

FILELIST Chapter 3
LISTFILE Chapter 3

LISTDS Chapter 9

RDRLIST Chapter 7
RDR Chapter 7
CP QUERY RDR ALL Chapter 7

CP QUERY FILES Chapter 7

QUERY DISK Chapter 3
QUERY SEARCH Chapter 3

CP QUERY VIRTUAL STORAGE Chapter 13
IDENTIFY Chapter 18

CP QUERY PRINTER Chapter 6

CP QUERYuserid Chapter 7

CPQUERYUR Chapter 6

The command format and usage notes for the CP QUERY command are found in
the VMjSP Command Reference for General Users. Command formats and usage
notes for the following CMS commands can be found in the VMjSP CMS
Command and Macro Reference.

FILELIST
IDENTIFY
LISTDS
LISTFILE
QUERY
RDR
RDRLIST

Communicating with Other Computer Users

Action

Creating Names file

Sending files

Sending messages

Sending notes

You can use CP and CMS commands to send files, notes and messages to one or
more users on your system or a system that is attached to yours via Remote
Spooling Communications Subsystem (RSCS) network. The NOTE, SENDFILE,
and TELL commands reference your "userid NAMES" file. The names file,
created with the NAMES command, contains a collection of information about
other computer users with whom you communicate.

Commands

NAMES

SENDFILE
CP SPOOL, CP TAG, DISK DUMP
CP SPOOL, CP TAG, PUNCH

TELL
CPMESSAGE

NOTE and SEND FILE

Description

Chapter 7

Chapter 7
Chapter 7
Chapter 9

Chapter 7
Chapter 7

Chapter 7

The command formats and usage notes for the following CP commands:

MESSAGE
SPOOL
TAG

can be found in the VMjSP CP Command Reference for General Users.

The following commands are CMS commands.

DISK DUMP
NAMES
NOTE
PUNCH
SENDFILE
TELL

Their command formats and usage notes are documented in the VM j SP CMS
Command and Macro Reference.

Chapter 4. What You Can Do with CMS Commands 4-5

Controll;ng Term;1UI1 Output

Action

VM/SP allows you to control your terminal output. You can refuse messages with
the CP SET MSG command. If you only want to see the short form of the CMS
ready message, you set this with the CMS SET RDYMSG command.

The CP SCREEN command allows you to select colors and extended highlighting
when you have the Extended Highlight feature and the Seven-Color feature on
certain 3279 Models.

If your program is directing output to your terminal, you can halt the terminal
display with the HT Immediate command, and later resume terminal display with
the RT Immediate command.

Command(s) Description

Alter any extended color or highlighting
definitions

CPSCREEN Chapter 1

Control whether or not you receive
messages

CPSET

Indicate the type of CMS ready message SET RDYMSG
that you want

Suppress terminal output HT Immediate command

Resume terminal output that was previously RT Immediate command
suppressed via HT

The command formats for the CP commands:

SCREEN
SET

Chapter 1

Chapter 1

Chapter 2

Chapter 2

are documented in the VM / SP CP Command Reference for General User's. The
command formats for the CMS commands:

4-6 VM/SP eMS User's Guide

HT (Immediate command)
RT (Immediate command)
SET

are documented iJl the VM/SP'CMS Command and Macro Reference.

I Sharing Virtual Disks

Action

Establish a link to a disk

Release a disk

VM/SP allows you to share virtual disks on either a permanent or temporary basis.
You can add another user's disk to your configuration with the CP LINK
command. When you no longer need a disk that you have linked to or have
temporarily accessed, you can release it with the CMS RELEASE command.
When you no longer need a disk in your virtual machine configuration, you can
disconnect it with the CP DETACH command.

Command(s) Description

CPLINK Chapter 1
ACCESS Chapter 1

RELEASE Chapter 1
CPDETACH Chapter 1

The formats and usage notes for the following CP commands:

DETACH
LINK

are documented in the VM / SP CP Command Reference for General Users.

The formats and usage notes for the following CMS commands:

ACCESS
RELEASE

are documented in the V~ / SP CMS Command and Macro Reference.

Chapter 4. What You Can Do with CMS Commands 4-7

Creating and Editing Files

Editor

System Product editor

CMS editor

4-8 VM/SP eMS User's Guide

Two editors are provided for you to create and modify files.

Command(s)

XEDIT

EDIT

Description

Chapter 5

Chapter 5
Appendix A

Complete information about the System Product editor is found in the VM / SP
System Product Editor Command and Macro Reference and the VM / SP System
Product Editor Vser's Guide. Refer to the VM/SP CMS Command and Macro
Reference for information on EDIT subcommands and macros.

What You Can Do to the Files in Your Virtual Reader

Action

Look at a file

Load the file onto your disk

Purge a file

CMS and CP commands allow you to look at, get rid of, keep, load onto disk, and
reorder the files in your virtual reader.

Command(s)

PEEK

RECEIVE
DISK LOAD
READ CARD

DISCARD (when in PEEK or RDRLIST)
CPPURGE

Description

Chapter 7

Chapter 7
Chapter 7
Chapter 6

Chapter 7
Chapter 7

Transfer a file to (or from) the reader queue
of another user

CPTRANSFER Chapter 7

Alter the external attributes of a file CPCHANGE Chapter 6

Change the order of the files CPORDER

The CMS commands:

DISCARD
DISK LOAD
PEEK
READ CARD
RECEIVE

Chapter 6

are documented in the VM/SP CMS Command and Macro Reference.

The CP commands:

CHANGE
ORDER
PURGE
TR..2\NSFER

are documented in the VM / SP CP Command Reference for General Users.

Chapter 4. What You Can Do with CMS Commands 4-9

Receiving or Loading Files onto Your Disk

Retrieving flles from •••

Your virtual reader

A tape

4-10 YM/sP eMS User's Guide

Files that are in your reader or on a tape can be loaded onto your disk.

Command(s)

RECEIVE
DISK LOAD
READ CARD

TAPE LOAD
FILEDEF and MOVEFILE

Description

Chapter 7
Chapter 7
Chapter 6,7

Chapter 6
Chapter 6

Command formats and usage notes for the following CMS Commands are
documented in the VM/SP Command and Macro Reference.

DISK LOAD
FILEDEF
MOVEFILE
READ CARD
RECEIVE
TAPE LOAD

Elming Files from Your Virtual Disk

Action

Erase specific files

Erase files from FILELIST menu

Erase all files on a particular disk

When you no longer need a file you can erase or discard it from your disk. You
can use the ERASE command when you want to erase all the files with a particular
filemode letter and number or the files with the same filename or filetype. You can
use the DISCARD command when in FILELIST to erase files. You can also use
DISCARD from PEEK and RDRLIST environments. This is discussed under
"What You Can Do to the Files in Your Virtual Reader." The FORMAT command
erases all files on a particular disk.

command(s) Description

ERASE Chapter 1

DISCARD Chapter 3

FORMAT Chapter 1

The VM / SP CMS Command and Macro Reference contains information on the
following GMS commands that you can use to erase files:

DISCARD
ERASE
FORMAT

Chapter 4. What You Can Do with CMS Commands 4-11

I Modifying Files

Action

The System Product editor, invoked with the XEDIT command, allows you to
interactively make changes, additions, or deletions to your CMS files. The
UPDATE command and the XEDIT command with the UPDATE option provide a
way for you to modify a source program without affecting the original.

Command(s) Description

Update Assembler language programs UPDATE Chapter 8
Chapter 8

Edit a file

4··12 VM/SP eMS User's Guide

XED IT (UPDATE option)

XEDIT Chapter 5

The command formats and usage notes for the UPDATE and XEDIT commands
are documented in the VM/SP CMS Command and Macro Reference.

I Moving Files

Action

CMS commands allow you to move a file or copies of file from one place to
another; from one virtual disk to another, to or from a tape to a disk, or from your
disk to the virtual reader of another user. Some commands, such as the TAPE
command, move a copy of the file to another location. Other commands, such as
the CP TRANSFER command, move (not copy) files.

Command(s) Description

Move files from your virtual reader to the CPTRANSFER Chapter 7
reader of another virtual machine

Dump contents of a virtual disk onto tape, DDR Chapter 6
restore such files to disk

Move files from tapes to disk, disk to tape TAPE Chapter 6

Move an OS partitioned dataset into a CMS MOVEFILE Chapter 9
file

Move files from your disk to the reader of SENDFILE Chapter 7
another (or your own) virtual machine

Move files from your virtual reader onto RECEIVE Chapter 7
your read/write disk

The CP TRANSFER command is documented in the VM / SP CP Command
Reference for General Users.

The formats and usage notes for the CMS commands

DDR
MOVEFILE
RECEIVE
SENDFILE
TAPE

are documented in the VM/SP CMS Command and Macro Reference.

Chapter 4. What You Can Do with CMS Commands 4-13

Developing and Testing eMS Programs

Action

CMS provides commands and macros for assembler language programmers who
may need to write programs to be used in the CMS environment.

Command(s) Description
or Macro

Create a module from a program that uses
OS or CMS macros

GENMOD Chapter 8

Identify macro libraries to be used when
assembling programs

GLOBAL Chapter 8

Verify existence of a file

Identifying file by its FSCB

Closing files

Make a backup copy

Modifying source programs

Assemble a program

4-14 YM/SP eMS User's Guide

FSSTATE macro Chapter 8

FSCB macro Chapter 8

FSCLOSE macro Chapter 8

COPYFILE Chapter 8
XEDIT and SET FNAME Chapter 8
subcommand

XEDIT with CTL option Chapter 8
UPDATE Chapter 8

ASSEMBLE Chapter 8

The XEDIT SFNAME subcommand is described in the VM / SP System Product
Editor Command and Macro Reference. The CMS commands and macros:

ASSEMBLE
COPYFILE
FSCB
FSCLOSE
FSSTATE
GENMOD
GLOBAL
UPDATE

are described in the VM/SP CMS Command and Macro Reference.

Developing and Testing OS Programs

CMS simulates many functions of the Operating System (OS), allowing you to
create, execute and debug your OS programs interactively.

Action Command(s) Description

Identify OS input or output files to CMS FILEDEF Chapter 9

Copy OS (or CMS) files from one device to MOVEFILE Chapter 9
another

Identify Macro libraries to be searched GLOBAL Chapter 9

Create, compress, or list macro libraries MACLIB Chapter 9

Create CMS files from OS data sets MOVEFILE Chapter 9

Assemble assembler language source ASSEMBLE Chapter 9
programs into object module format

Load relocatable object file into storage LOAD Chapter 9

Begin execution of previously loaded START Chapter 9
program

Read object file and update CMS TEXT TXTLIB Chapter 9
libraries

Create LOAD LIB libraries from OS object LKED Chapter 9
modules

The command formats and usage notes for the following CMS commands:

ASSEMBLE
FILEDEF
GLOBAL
LKED
LOAD
MACLIB
MOVEFILE
START
TXTLIB

are documented in the VMjSP eMS command and Macro Reference.

Chapter 4. What You Can Do with CMS Commands 4-15

Developing and testing VSE Programs

You can use CMS to create and compile VSE programs. CMS simulates many
functions of VSE so that you can use VM/SP to develop your programs and then
execute them in a VSE virtual machine.

Action

Entering CMS/Do.S environment

Accessing the system residence volume

Display fileids of files on a DOS disk

Create CMS files from DOS files on tape

Create CMS files for VSE modules from
tape

Assign logical units

Supply CMS /DOS with specific file
identification information for a file that is
going to be used for input or output

Copy, punch, display at terminal, or print
books from private or system source
statement libraries

Copy, punch, display at terminal, or print
relocatable modules

Copy, punch, display at terminal, or print
procedures from system procedure library

Copy and de-edit macros from system and
private E sub libraries

Access the directories of system or private
libraries

Link-edit relocatable modules

Load phases from either system or private
DOS core image libraries

Identify macro libraries to be searched

Command(s) Description

SET DOS ON Chapter 10

ACCESS Chapter 10

LISTDS Chapter 10

MOVEFILE and FILEDEF Chapter 10

VMFDOS Chapter 10

ASSGN Chapter 10

DLBL Chapter 10

SSERV Chapter 10

RSERV Chapter 10

PSERV Chapter 10

ESERV Chapter 10

DSERV Chapter 10

DOSLKED Chapter 10

FETCH Chapter 10

GLOBAL Chapter 10

The VMFDOS command is described in the VM / SP Installation Guide.

"4-16 V'M/SP eMS User's Guide

The following CMS commands:

ACCESS
ASSGN
DLBL
DSERV
DOSLKED

ESERV
FETCH
FILEDEF
GLOBAL
LISTDS
MOVEFILE
PSERV
RSERV
SET
SSERV

are described in the VM/SP CMS Command and Macro Reference.

Chapter 4. What You Can Do with CMS Commands 4-17

What You Can Do to Your VSAM Catalogs

I You can use CMS commands to obtain information about your VSAM catalogs.

Action Command(s) Description

Verify a complete catalog structure CATCHECK Chapter 11

Determine what free space is available for LISTDS Chapter 11
allocation

Define a ddname and relate it to a disk file DLBL Chapter 11

Define and maintain VSAM catalogs and AMSERV Chapter 11
data sets

Erase LISTING files from your disk DISCARD (from FILELIST) Chapter 3
ERASE Chapter 3

Using tapes with VSAM TAPE Chapter 19

Obtain VSE/VSAM assembler language VSEVSAM Chapter 19
macros

The VSEVSAM command is documented in the VM / SP Installation Guide. The
following CMS commands:

4-18 VM/SP eMS User's Guide

AMSERV
CATCHECK
DISCARD
DLBL
ERASE
LISTDS
TAPE

are documented in the VM / SP CMS Command and Macro Reference:

I Interactive Debugging

If you encounter problems, executing 'application programs or when you want to
test new lines of code, you can use a variety of CMS and CP debugging techniques
to examine your program as it executes.

Action Command(s)

Enter debug environment DEBUG
CPEXTERNAL

Stop execution at a particular virtual address CP PER
BREAJ<subcommand
CPADSTOP

Examine virtual storage, registers, or PSW CP DISPLAY

Change the contents of a storage location, CP STORE
register, or control word.

Resume program execution CP BEGIN

Trace program activity CP PER
SET EXECTRAC
SVCTRACE
CPTRACE

Obtain a program dump CP DUMP

Stop all tracing of your System Product TE Immediate command
interpreter EXEC

Start tracing of your System Product TS Immediate command
interpreter EXEC

Description

Chapter 2
Chapter 2

Chapter 13
Chapter 13
Chapter 13

Chapter 13

Chapter 13

Chapter 13

Chapter 13
Chapter 18
Chapter 13
Chapter 13

Chapter 13

Chapter 18

Chapter 18

Information about the following CP commands is found in the VM / SP CP
Command Reference for General Users.

ADSTOP
BEGIN
DISPLAY
DUMP
EXTERNAL
PER
STORE
TRACE

Information about the following:

DEBUG subcommands that you can enter in the debug
environment
SVCTRACE command
SET EXECTRAC command
TE Immediate command
TS Immediate command

is found in the VM/SP CMS Command and Macro Reference.

Chapter 4. What You Can Do with CMS Commands 4-J 9

4-20 VM/SP eMS User's Guide

Chapter S. Editing Your Files

To edit a file means to make changes, additions, or deletions to a CMS file that is
on a disk, and to make these changes interactively: you instruct the editor to make
a change, the editor does it, and then you request another change. You can edit a
file that does not exist; when you do so, you create the file online, and can modify
it as you enter it.

To file a file means to write a file you are editing back onto a disk, incorporating
any changes you made during the editing session. When you issue the FILE
subcommand to write a file, you are no longer in edit environment, but are returned
to the CMS environment. You can, however, write a file to disk and then continue
editing it, by using the SAVE subcommand.

An editing session is the period of time during which a file is in your virtual storage
area, from the moment you issue the XEDIT command or the EDIT command until
you let the editor know that you are finished working on the file, by entering FILE
or QUIT.

Editors Available for You to Use

The System Product Editor

In CMS usage, the term edit is used in a variety of ways, all of which refer,
ultimately, to the functions of the System Product editor or the CMS editor.

The System Product editor provides full screen and file manipulation capabilities
not offered by the CMS editor.

This editor has the following advantages:

1. Full screen support for IBM 3270 Display Terminals is available including:

• the ability to display multiple views of the same file or of different files.

• automatic "wrapping" of lines that are wider than a screen line

• the ability to enter selected (prefix) sub commands directly on the displayed
lines.

• the ability to define the screen format according to individual preferences.

2. Extended string search facilities are provided for improved text processing.

3. A variety of macros, that use the EXEC 2 interpreter are offered.

4. An enhanced set of functions to handle program development is available,
including automatic update generation.

5. The ability to import and export data between files is provided.

For complete information about the System Product editor, see the VM/SP System
Product Editor User's Guide and the VM / SP System Product Editor Command and
Macro Reference.

Chapter 5. Editing Your Files 5;;.1

\
\

The eMS Editor

The XEDIT Command

Writing a File Onto Disk

5-2 VM/SP eMS User's Guide

When you issue the EDIT command, the System Product editor automatically
places you in eMS editor (EDIT) migration mode. In this mode, you can issue
both EDIT and XEDIT subcommands. For complete information on EDIT
compatibility mode, see the VM / SP System Product Editor Command and Macro
Reference. For more information on using the eMS editor, see Appendix A, "The
eMS Editor."

When you issue the XEDIT command you must specify the filename and filetype of
the file you want to edit. For Example:

XEDIT NEWFILE SCRIPT

A file you create and the modifications that you make to it during an edit session
are not automatically written to a disk file. To save the results, you can do the
following:

• Periodically issue the subcommand:

save

to write onto disk the contents of the file as it exists wh~n you issue the
subcommand. Periodically issuing this XEDIT subco:nnnand protects your data
against a system failure; you can be sure that changes you make are not lost.

• At the beginning of the edit session, issue the SET AUTOSA VB subcommand,
with a number:

set autos ave 10

Then, for every tenth change or addition to the file, the editor issues an
automatic save request, which writes the file onto disk.

• To terminate the editing session and write the file onto disk, issue the
subcommand: '

file

The file disappears from your screen, but the editor saved it on your disk. You
can return to the edit environment by issuing the XEDIT command, specifying
a different file or the same file.

The editor decides which disk to write the file onto according to the following
hierarchy:

• If you specify a filemode on the FILE or SA VB subcommand line, the file is
written onto the specified disk.

• If· the current filemode of the file is the mode of a read/write disk, the file is
written onto that disk. (If you have not specified a filemode letter, it defaults to
your A-disk.)

SHOPPING LIST

• If the filemode is the mode of a read-only extension of a read/write disk, the
file is written onto the read/write parent disk.

• If the filemode is the mode of a read-only disk that is not an extension of a
read/write disk, the editor cannot write the file and issues an error message.

If you are editing a file and decide that you do not wish to save the changes, you
can use the subcommand:

quit

No changes that you made since you last used the SA VB subcommand (or the
editor last issued an automatic save for you) are retained. If you have just begun an
edit session, and have made no changes at all to a file, and for some reason you do
not want to edit it at all (for example, you misspelled the name, or want to change
a CMS setting before editing the file), you can use the QUIT subcommand instead
of the FILE subcommand to terminate the edit session and return to CMS.

A file must have at least one line of data in order to be written. To create a new
file called SHOPPING LIST, enter:

xedit shopping list

The XEDIT command invokes the System Product editor, so you will see looks like
Figure 5-1.

A1 F 80 TRUNC=80 SIZE=O LINE=O COL=1 ALT=O

* * * TOP OF FILE * * *
I ••• + 1 •••• + 2 •••• + 3 •••• + 4 ••.• + 5 •••• + 6 •••• + 7 •••
* * * END OF FILE * * *

====> input_

Figure 5-1. Sample XEDIT Screen

XED I T 1 FILE

On the command line (next to the arrow) type INPUT and press the ENTER key.
The file is placed in input mode. The cursor is placed automatically on the first line
in the input zone, where you can enter your data. You are writing input lines that
are eventually going to be written onto your A-disk.

Enter the following data:

Chapter 5. Editing Your Files 5 ... 3

apples
lettuce
tomatoes
bread

SHOPPING LIST
INPUT MODE:

A1 F 80 TRUNC=80 SIZE=O LINE=O COL=1 ALT=3

* * * TOP OF FILE * * *
I ••• + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 •••• + 7 •.•• +
apples
lettuce
tomatoes
bread

====> * * * INPUT ZONE * * *
INPUT-MODE 1 FILE

Figure 5-2. Sample XEDIT Screen In INPUT Mode

5-4 VM/SP eMS User's Guide

Now, press the ENTER key, the screen moves up so that you can enter more data.
When you are finished entering data, press the ENTER key again to return to edit
mode.

To keep this file in permanent storage, you type FILE on the command line and
press the ENTER key. You should see a message that looks something like this:

Ri

Even though the file has disappeared from your screen, the editor has saved it on
your disk.

Let's check and see if the file was really saved. We'll use the FILELIST command
to list the files on your A-disk with a filename of shopping. Enter:

filelist shopping

The display may look like Figure 5-3.

MYLOGON FILELIST AO V 108 TRUNC=108 SIZE=1 LINE=1, COL=1 ALT=O
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time

SHOPPING LIST A1 F 80 4 1 5/16/83 15:07:49

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(size)
7= Backward 8= Forward 9= FL /n 10= 11= XEDIT 12= Cursor

====>
XEDIT

Figure 5-3. Sample FILELIST Screen for a Particular Ftletype

Using the Editor in Line Mode

Editing on a Remote 3270

The editor's display mode is the most common format of operation on a 3270.
There are, however, instances when it is not possible or not desirable to use the
editor in display mode. For these instances, you should use the line mode of
operation, which is the equivalent to using a typewriter terminal. When you use
line mode, each XEDIT subcommand you enter, and the response (if you have
verification on), is displayed, a line at a time, on the screen in the output display
area. There is no full screen display of the file.

You need only be concerned with using line mode if you are connected to VM/SP
by a remote 3270 line, or if you are editing a file from within an EXEC and you
want to control the screen display. Although it is possible to use the editor in line
mode on a local 3270, it is rarely necessary for normal editing purposes.

When you invoke the editor from a remote 3270, you are placed in line mode by
the editor. The advantage of using the 3270 in line mode (particularly on a remote
editor) is that the editor can respond more quickly to display requests. When you
use display mode, the editor has to write out the entire output display area when
you move the current line pointer; in line mode, it has only to write a single line.

If you want to use display mode, you enter the XEDIT subcommand:

set terminal display

The editor begins operating in display mode, and you can use the special editing
functions available in display mode.

However, when you are using a remote 3270 in display mode, and you enter the
INPUT subcommand to begin entering input lines, the screen is cleared, and your
input lines are displayed as if you were in line mode, beginning at the top of the
screen. When you enter a null line to return to edit mode, the editor returns to a
full screen display.

You can resume editing in line mode by using the subcommand:

set terminal typewriter

Chapter 5. Editing Your Files 5-5

Editing From an EXEC Flle

5-6 VM/SP eMS User's Guide

If you invoke the editor ,from an EXEC, but you do not want the screen cleared
when the editor gets control, you can specify the NOCLEAR option on the XEDIT
command line:

xedit test file (noclear

This places the 3270 in line mode, so that the lines already on the screen are not
erased.

The 3270 remains in line mode for the remainder of the edit session, and you
cannot use the SET TERMINAL subcommand to place it in display mode.

Chapter 6. Using Real Printers, Punches, Readers, and Tapes

eMS Unit Record Device Support

CMS supports one virtual reader at address OOC, one virtual punch at address 000,
and one virtual printer at address OOE. When you invoke a CMS command or
execute a program that uses one of these unit record devices, the device must be
attached at the virtual address indicated.

Using the CP Spooling System

Spool File Characteristics

CLASS (CL):

Any output that you direct to your virtual printer or punch, or any input you
receive from your reader, is controlled by the spooling facilities of the control
program (CP).Each output unit is known to CP as a spool file, and is queued for
processing with the spool files of other users on the system. Ultimately, a spooled
printer file or a spooled punch file may be released to a real printer or card punch
for printing or punching.

The final disposition of a unit record spool file depends on the spooling
characteristics of your virtual unit record devices, which you can alter with the CP
command SPOOL. To find out the current characteristics of your unit record
devices you can issue the command:

cp query ur

Figure 6-1 is an example of the response you will receive from issuing this
command.

RDR DOC CL A NOCONT HOLD EOF READY
PUN ODD CL A NOCONT NOHOLD COPY 001 READY FORM STANDARD

ODD TO CMSGDE DrST 2G47-706
PRT ODE CL A NOCONT NOHOLD COpy 001 READY FORM STANDARD

ODE TO CMSGDE DrST 2G47-706 FLASHC 000
ODE FLASH CHAR MDFY FCB

Figure 6-1. CP QUERY Unit Record Response

You can use the SPOOL command to change spool file characteristics. When you
use the SPOOL command to control a virtual unit record device, you do not change
the status of spool files that already exist, but rather set the characteristics for
subsequent output. For information on modifying existing spool files, see "Altering
Spool Files," below.

Note: When you issue a SPOOL command for a unit record device, you
can refer to it by its virtual address, as well as by its generic device type
(for example, CP SPOOL E HOLD).

Spool files; in the CP spool file queue, are grouped according to class, and all files
of a particular class may be processed together, or directed to the same real output
device. The default values for your virtual machine are set in your VM/SP
directory entry, and are probably the standard classes for your installation.

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-1

HOLD:

COPY:

FOR:

6-2 VM/SP eMS User's Guide

You may need, however, to change the class of a device if you want a particular
type of output, or some special handling for a spool file. For example, if you are
printing an output file that requires special forms, and your installation expects that
output to be spooled class Y, issue the command:

cp spool printer class y

All subsequent printed output directed to your printer at virtual address OOE (all
CMS output) is processed as class Y.

If you place a HOLD on your printer or punch, any files that you print or punch
are not released to the control program's spooling queue until you specifically alter
the hold status. By placing·your output spool files in a hold status, you can select
which files you print or punch, and you can purge duplicate or unwanted files. To
place printer and punch output files in a hold status issue the commands:

cp spool printer hold
cp spool punch hold

When you have placed a hold status on printer or punch files and you produce an
output file for one of these devices, CP sends you a message to remind you that
you have placed the file in a hold:

PRT FILE xxxx FOR userid COpy xx HOLD

If, however, you have issued the command:

cp set msg off

then you do not receive the message.

When you place a reader file in a hold status, then the file remains in the reader
until you remove the hold status and read it, or you purge it.

If you want multiple copies of a spool file, you should use the COPY operand of
the SPOOL command:

cp spool printer copy 10

If you enter this command, then all subsequent printer files that you produce are
each printed 10 times, until you change tht COPY attribute of your printer.

You can spool printed or punched output so that it will be distributed to another
userid by using the FOR operand of the SPOOL command. For example, if you
enter:

cp spool printer for charlie

Then, all subsequent printer files that you produce have, on the output separator
page,· the userid CHARLIE and the distribution code for that user. The spool file
is then under the control of that user, and you cannot alter it further.

CONT, NOCONT:

TO:

You can print or punch separate spool files with the NOCONT option of the CP
SPOOL command. You can also combine them into one continuous spool file if
you use the CONT operand of the CP SPOOL command. For example, if you
issue the following sequence of commands:

cp spool punch cont to brown
punch asm1 assemble
punch asm2 assemble
punch asm3 assemble
cp spool punch nocont
cp close punch

Then, the three files ASMI ASSEMBLE, ASM2 ASSEMBLE, and ASM3
ASSEMBLE, are punched to user BROWN as a single spool file. When user
BROWN reads this file onto a disk,. however, CMS creates separate disk files.
Note that if multiple files are sent with continuous spooling (using CP SPOOL
PUNCH CONT) and a series of DISK DUMP commands, RECEIVE recognizes
only the first file identifier (filename and filetype); Any files having the same file
identifier as existing files on your A-disk will overlay those files on your A-disk.

As a sender, you can avoid imposing this problem on file recipients by doing any of
the following:

1. Always use SEND FILE, which resets any continuous spooling options in
effect.

2. Do not spool the punch continuous.

3. If you must send files with continuous spooling, warn the recipient(s) that files
are being sent in this manner and list the file identifiers of the files you are
sending.

Similarly, if the punch is spooled continuous and PUNCH is used to send multiple
files, the file is read in as one file with ":READ" cards imbedded. In this case,
although no files are overlaid, the recipient must divide the file into individual files.
This problem can also be avoided by using SEND FILE or by not spooling the
punch continuous.

When you spool your printer or punch to another userid, all output from that
device is transferred to the virtual reader of the userid you specify. When you are
punching a CMS disk file, as in the example above, you should use the TO operand
of the SPOOL command to specify the destination of the punch file.

You can also use this operand to place output in your own virtual reader by using
the * operand:

cp spool printer to *

After you enter this command, subsequent printed output is placed in your virtual
reader. You might use this technique as an alternative way of preventing a printer
file from printing, or, if you choose to read the file onto disk from your reader, of
creating a disk file from printer output.

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-3

A.ltering SJI(JO' Files

Similarly, if you are creating punched output in a program and you want to examine
the output during testing, you could enter:

cp spool punch to *

so that you do not punch any real cards or transfer a virtual punch file to another
user.

After you have requested that VM/SP print or punch a file, or after you have
received a file·in your virtual reader and before the file is actually printed, punched,
or read, you can alter some of its characteristics, change its destination, or delete it
altogether.

Every spool file in the VM/SP system has a unique four-digit number from 1 to
9900 assigned to it, called a spoolid. You can use the spoolid of a file to identify it
when you'want to do something to it. You can also change a group of files, by
specifying that all files of a particular class be altered in some way, or you can
ma:nipulate all of your spool files for a certain device at the same time.

The CP commands that allow you to manipulate spool files are CHANGE,
ORDER, PURGE, and TRANSFER. In addition, you can use the CP QUERY
command to list the status and characteristics of spool files associated with your
userid.

When you use any of these commands to reference spool files of a particular
device, you have the choice of referring to the files by class or by spoolid. You can
also specify ALL. For example, if you enter the command:

cp query printer all

you might see the display:

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
BIN706
BIN706

CMSUG 0142 K PRT 000178 002 USER 04/17 07:58:48 SCHED SCRIPT
CMSUG 0180 1 PRT 002021 001 NONE 04/17 08:02:26 TESTFILE SCRIPT

6-4 VM/SP eMS User's Guide

Until any of these files are processed, or in the case of files in the hold status, until
they are released, you can change the spool file name and spool file type (this
information appears on the first page or first card of output), the distribution code,
the number of copies, the class, or the hold status, using the CP CHANGE
command. For example:

cp change printer all nohold

changes all printer files that are in a hold status to a nohold status. The CP
CHANGE command can also change the spooling class, distribution code, and so
on.

If you decide that you do not want to print a particular printer file, you can delete it
with the CP PURGE command:

cp purge printer 7615

After you have punched a file to some other user, you cannot change its
characteristics or delete it unless you restore it to your own virtual reader. You can
do this with the TRANSFER command:

cp transfer all from usera

This command returns to your virtual reader all punch files that you spooled to
USERA's virtual reader.

You can determine, for your reader or printer file~, in what order they should be
read or printed. If you issue the command:

cp order printer 8195 6547

Then, the file with spoolid of 8195 is printed before the file with a spoolid of 6547.

The CP spooling system is very flexible, and can be a useful tool, if you understand
and use it properly. The VM / SP CP Command Reference for General Users
contains complete format and operand descriptions for the CP commands you can
use to modify spool files.

Using Your Card Punch and Card Reader in CMS

Using Real Cards

The eMS READCARD command reads cards from your virtual reader at address
OOC. Cards can be placed in the reader in one of three ways:

• By reading real punched cards into the system card reader. A CP ID card tells
the CP spooling system which virtual reader is to receive the card images.

• By transferring a file from another virtual machine. Cards are transferred as a
result of a virtual punch or printer being spooled with the TO operand, or as a
result of the TRANSFER command. Virtual card images are created with the
CMS PUNCH command, or from user programs or EXEC procedures.

• By punching, spooling, or transferring files to your own reader, or by using the
MOVEFILE command.

If you have a deck of punched cards that you want read into your virtual machine
reader, you should punch, preceding the deck, a CP ID card. If your userid is
HAPPY, then the id card would be:

ID HAPPY

If you plan to use the READCARD command to read this file onto a CMS disk,
you can also punch a READ control card that specifies the filename and filetype
you want to have assigned to the file:

:READ PROG6 ASSEMBLE

Then, to read this file onto your CMS A-disk, you can enter the command:

readcard *

If a file named PROG6 ASSEMBLE already exists, it is replaced.

If you do not punch a READ control card, you can specify a filename and filetype
on the READCARD command:

readcard prog6 assemble

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-5

Using Your Virtual Card Punch

Using the MOVEFILE Command

6-6 VM/SP eMS User's Guide

If this spool file contained a READ control card, the card is not read, but remains
in the file; if you edit the file, you can use the DELETE subcommand to delete it.

If a file does not have a READ control card, and if you do not specify a filename
and filetype when you read the file, CMS names the file READCARD CMSUTI.

If you are reading many files into the real system card reader, and you want to read
them in as separate spool files (or you want to spool them to different userids), you
must separate the cards and read the decks onto disk individually. The CP system,
after reading an ID card, continues reading until it reaches a physical end of file.

When you use the CMS PUNCH command to punch a spool file, a READ control
card is punched to precede the deck, so that it can be read with the READ CARD
command. If you do not wish to punch a READ control card (also referred to as a
header card), you can use the NOHEADER option on the PUNCH command:

punch prog8 assemble * (noheader

You should use the NOHEADER option whenever you punch a file that is not
going to be read by the READCARD command.

The PUNCH command can only punch records of up to 80 characters in
length. If you need to punch or to transfer to another user a file that has records
greater than 80 characters in length, you can use the DISK DUMP command:

disk dump prog9 data

If your virtual punch has been spooled to another user, that user can read this file
using the DISK LOAD command:

disk load

Unlike the READCARD command, DISK LOAD does not allow you to specify a
file identification for a file you are reading; the filename and filetype are always the
same as those specified by the DISK DUMP command that created the spool file.

A card file created by the DISK DUMP command can only be read onto disk by
the DISK LOAD command.

You can use the MOVEFILE command, in conjunction with the FILEDEF
command, to place a file in your virtual reader, or to copy a file from your reader to
another device. For example:

cp spool punch to *
filedef output punch
filedef input disk coffee exec a1
mnvefile input output

the file COFFEE EXEC At is punched to your virtual card punch (in card-image
format) and spooled to your own virtual reader.

Creating Flles Using Your Punch

Apart from the procedures shown above that transfer whole files with one or two
commands, there are other methods you can use to create files using your virtual
punch. From a program or an EXEC file, you can punch one line at a time to your
virtual punch. Then use the CLOSE command to close the spool file:

cp close punch

Depending on how the punch was spooled (the TO setting), the virtual punch file is
either punched or transferred to a virtual reader.

Punching Cards Using I/O Macros:

Punching Cards From an EXEC:

Handling Tape Files in eMS

TAPE Command

If you write an OS, DOS, or CMS program that produces punched card output, you
should make an appropriate file definition. If you are an OS user, you should use
the FILEDEF command to define the punch as an output data device; if you are a
DOS user, you must use the ASSGN command. If you are using the CMS
PUNCHC macro, the punch is assigned for you. The spooling characteristics of
your virtual punch control the destination of the punched output.

The CMS EXEC facility provides two control statements for punching cards:
&PUNCH, which punches a single line to the virtual punch, and &BEGPUNCH,
which precedes a number of lines to be punched. In a System Product interpreter,
EXEC 2, or CMS EXEC, you can use the CMS commands PUNCH and DISK
DUMP to punch CMS files.

There are a variety of tape functions that you can perform in CMS, and a number
of commands that you can use to control tape operations or to read or write tape
files. One of the advantages of placing files on tapes is portability: it is a
convenient method of transferring data from one real computing system to another.
In CMS, you can use tapes created under other operating systems. There are also
two CMS commands, TAPE and DDR, that create tape files in formats unique to
CMS, that you can use to back up minidisks or to archive or transfer CMS files.

Under VM/SP, virtual addresses 181 through 184 are usually reserved for tape
devices. In most cases, you can refer to these tapes in CMS by using the symbolic
names TAP1 through TAP4. In any event, before you can use a tape, you must
have it mounted and attached to your virtual machine by the system operator.
When the tape is attached, you receive a message. For example, if the operator
attaches a tape to your virtual machine at virtual address 181, you receive the
message:

TAPE 181 ATTACHED

The various types of tape files, and the commands and programs you can use to
read or write them are:

The CMS TAPE command creates tape files from CMS disk files. They are in a
special format, and should only be read by the CMS TAPE LOAD command. For
examples of TAPE command operands and options, see "Using the CMS TAPE
Command."

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-7

TAPPDS Command:

TAPEMAC Command:

MOVEFILE Command:

User Programs:

Access Method Services:

DDR Program:

The T APPDS command creates CMS disk files from OS or DOS sequential tape
files, or from OS partitioned data sets.

The TAPEMAC command creates CMS MAC LIB files from OS macro libraries
that were unloaded onto tape with the IEHMOVE utility program.

The MOVEFILE command can copy a sequential tape file onto disk or a disk file
onto tape. It can move files from your reader to tape or from tape to your punch.

You can write programs that read or write sequential tape files using OS, DOS, or
CMS macros.

Tapes created by the EXPORT function of access method services can be read
only using the access method services IMPORT function. Both the IMPORT and
EXPORT functions can be invoked in CMS using the AMSERV command. The
access method services REPRO function can also be used to copy sequential tape
files.

The DDR program, invoked with the CMS command DDR, dumps the contents of
a virtual disk onto tape, and should be used to restore such files to disk.

Using the CMS TAPE Command

6-8 VM/SP eMS User's Guide

The CMS TAPE command provides a variety of tape handling functions. It allows
you to selectively dump or load CMS files to and from tapes, as well as to position,
rewind, and scan the contents of tapes. You can use the TAPE command to save
the contents of CMS disk files, or to transfer them from one VM/SP system to
another. The following example shows how to create a CMS tape with three tape
files on it, each containing one or more CMS files, and then shows how you, or
another user, might use the tape at a later time.

The example is in the form of a terminal session and shows, in the "Terminal
Display'" column, the commands and responses you might see. System messages
and responses are in uppercase, and user-entered commands are in lowercase. The
"Comments" column provides explanations of the commands and responses.

Terminal Display

TAPE 181 ATTACHED

listfile * assemble a (exec
R;
ems tape dump
TAPE DUMP PROG1 ASSEMBLE A1

DUMPING
PROG1 ASSEMBLE A1
TAPE DUMP PROG2 ASSEMBLE A1
DUMPING
PROG2 ASSEMBLE A1
TAPE DUMP PROG3 ASSEMBLE A1

TAPE DUMP PROG9 ASSEMBLE A1
DUMPING
PROG9 ASSEMBLE A1
R;

tape wtm
R;

tape dump mylib maclib a
DUMPING
MYLIB MACLIB A1
R;
tape dump cmslib maclib *
DUMPING
CMSLIB MACLIB S2
R;

tape wtm
R;

tape dump mylib txtlib a
DUMPING
MYLIB TXTLIB A1
R;

tape wtm 2
R;

tape rew
R;

tape scan (eof 4
SCANNING
PROG1 ASSEMBLE A1
PROG2 ASSEMBLE A1
PROG3 ASSEMBLE A1
PROG4 ASSEMBLE A1
PROGS ASSEMBLE A1
PROG6 ASSEMBLE A1
PROG7 ASSEMBLE A1
PROG8 ASSEMBLE A1
PROG9 ASSEMBLE A1

Comments

Message indicates that the tape is
attached.

Prepare to dump all ASSEMBLE files
by using the LISTFILE command
EXEC option; then execute the CMS
EXEC using TAPE and DUMP as
arguments.

The TAPE command responds to
each TAPE DUMP by printing the
file identification of the file being
dumped.

The last file, PROG9 ASSEMBLE, is
dumped.

TAPE command writes a tape mark
to indicate an end of file.

Two macro libraries are dumped, by
specifying the file identifiers.

Another tape mark is written.

A TEXT library is dumped.

Two tape marks are written to
indicate the end of the tape.

The tape is rewound.

The tape is scanned to verify that all
of the files are on it.

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-9

6-10 VM/SP eMS User's Guide

Terminal Display

END-OF-FILE OR END-OF-TAPE
MYLIB MACLIB A1
CMSLIB MACLIB S2
END-OF-FILE OR END-OF-TAPE
MYLIB TXTLIB A1

END-OF-FILE OR END-OF-TAPE
END-OF-FILE OR END-OF-TAPE
R;

#cp det 181
TAPE 181 DETACHED

Comments

Tape mark indication.

Two tape marks indicate the end of
the tape.

The CP DETACH command rewinds
and detaches the tape.

*******The tape created above is going to be read. *******

TAPE 181 ATTACHED

tape load prog4 assemble

LOADING
PROG4 ASSEMBLE A1
R;

tape scan
SCANNING
PROGS ASSEMBLE A1
PROG6 ASSEMBLE A1
PROG7 ASSEMBLE A1
PROG8 ASSEMBLE A1

END-OF-FILE OR END-OF-TAPE
R;

tape scan
SCANNING
MYLIB MACLIB A1
CMSLIB MACLIB S2
END-OF-FILE OR END-OF-TAPE
R;

tape bsf 2
R;

tape fsf
R;

tape load (eof 2
LOADING
MYLIB MACLIB A1
CMSLIB MACLIB A2
END-OF-FILE OR END~OF-TAPE
MYLIB TXTLIB A1
END-OF-FILE OR END-OF-TAPE
R;

#cp detach 181
TAPE 181 DETACHED

Message indicating the tape is
attached.

One file is to be read onto disk.

The TAPE command displays the
name of the file loaded. Any existing
file with the same filename and
file type is erased.

The remainder of the first tape file is
scanned.

Indication of end of first tape file.

The second tape file is scanned.

The tape is backed up and positioned
in front of the last tape file.

The tape is forward spaced past the
tape mark.

The next two tape files are going to
be read.

The tape is detached.

Tape Labels in eMS

Limitations

User Responsibilities

Support in the CMS component of VM/SP to process labelled tapes includes the
following features:

• Checks IBM standard labels on input

• Writes IBM standard labels on output

• Allows you to specify routines to process standard user labels during DOS and
OS macro simulation under CMS

• Allows you to specify exits for processing tapes with nonstandard labels during
execution of CMS macro simulations and some CMS tape operation commands
CMS processes all tape labels; CP does not process tape labels.

CMS tape label processing does not include:

• Label processing for tapes that are read backwards

• Processing of multivolume files on tapes

• Support for ANSI tapes or ASCII labels

• Label processing for any functions of the CMS TAPE command except the
two functions DVOLI and WVOLI that process VOLllabels.

You must initiate all your own tape label processing. To specify that you have a
labelled tape, use the FILEDEF command for an OS simulation program, or use a
DOS DTFMT macro for a CMS/DOS program. You can also use the TAPESL
macro to process standard HDRI and EOFllabels and the CMS TAPE command
to write and display standard VOLI labels. You can provide IBM standard label
description details with the LABELDEF command for all types of label processing.
After label processing has been requested, it occurs automatically and there is no
interaction between you and CMS unless an error occurs. See the "Error
Processing" section later in this publication for a discussion of error processing.

Label Processing in OS Simulation

If you are running an OS simulation program and using OPEN and CLOSE macros,
you specify the type of label processing you want in a FILEDEF command for a
given file. Detailed information about the FILEDEF command is found in the
VM / SP CMS Command and Macro Reference. You may specify that you want
standard label processing (with SL) or nonstandard label processing (with NSL). If
you choose nonstandard label processing, you must already have written a routine
to process nonstandard labels. The name of this routine must be specified by the
filename in the NSL parameter on FILEDEF. An example of nonstandard label
processing is given in the section "NSL Processing." To be sure that the tape you
are using contains no IBM labels, you may specify no label processing (NL) in the
FILEDEF command. When NL is specified, CMS does not open files on a tape
containing a VOLllabel as its first record. You also can specify bypass tape label
processing (BLP) on a FILEDEF command. BLP tells CMS to bypass tape label
processing for a file, and instead, to position the tape at a particular file before

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-11

processing the data records in the file. If you specify LABOFF for a FILEDEF
tape file, label processing is turned off and there is no tape positioning or label
checking.

LABOFF is the default, so you do not receive any processing or tape positioning
for a tape file unless you specifically request it. If you specify BLP, NL, SL, or
SUL processing but omit a positional parameter, the position defaults to I and the
tape is positioned at the first file. Examples of NL, BLP, and LABOFF processing
are given in the sections "No Label (NL) Processing," "Bypass Label (BLP)
Processing," and "Label Off (LABOFF) Processing."

IBM Standard Tape Label Processing

6-12 VM/SP eMS User's Guide

For IBM standard labels, you specify, SL or SUL, and optional positional and
VaLID parameters. On a FILEDEF command, SUL means standard user labels.
Everything you do for SL files, you must also do for SUL files. The positional
parameter for standard label files works the same way it does in OS/VS. If you
specify:

fi1edef fi1ex tap1 sl 2

the tape is spaced to what is physically the fourth file on the tape before processing
begins. The reason for this spacing is that a standard labelled tape has one header
file, one data file, and one trailer file for each data file. If you leave off the
positional parameter:

fi1edef fi1ey tap3 suI

you get the first file on the tape.

The optional VOLID parameter on the FILEDEF command allows you to specify
the volume serial number in the VaLl label of a tape in case you want only the
vaLl label checked on the tape. If you want to specify other fields in IBM
standard labels, you must also provide a LABELDEF statement for the tape file.
The LABELDEF statement allows you to assign values to all fields in a standard
HDRI or EOFllabel. A complete description of how the LABELDEF command
works may be found in the "LABELDEF Command" section later in this
publication.

The following command defines filez as a standard labelled tape file on a tape with
a VOLllabel and a volume serial number of DEPT78:

fi1edef fi1ez tap1 51 valid dept78

If you also wish to specify a data set identifier for filez, you must furnish a
LABELDEF command forfilez as well as the FILEDEF command. Data set name
may not be specified on the FILEDEF command. The LABELDEF statement
below assigns a data' set name of payroll to filez.

labe1def filez fid payroll

You can also specify file sequence number, volume sequence number, expiration
date and other fields, on a LABELDEF command. However, if you are using OS
simulation macros (OPEN, CLOSE, READ, WRITE, (jET, PUT, etc.) to process
your tape file, the only LABELDEF parameter that has meaning for input files is
fid (data set identifier). This is the only field that is checked on input by as
simulation. The other LABELDEF fields are used to specify values to be written
in output labels. They are also used by other types of tape label processing

No Label (NL) Processing

(CMS/DOS and CMS) to check input labels. If no LABELDEF command has
been supplied for output files, default values are used to write out labels (see the
section on the LABELDEF command for the default values).

After you have set up your descriptive information for a standard labelled tape file
in FILEDEF and LABELDEF statements, you run a regular OS simulation
program under CMS. During program execution, HDRI and HDR2labeis are
written or checked at OPEN time. EOFI and EOF2labeis are written or checked
at CLOSE time. To have EOF labels processed, you must issue a CLOSE macro.
The VOLllabel on a tape is checked whenever a file on that tape is opened if the
user has specified a VOLID parameter on his FILEDEF statement or LABELDEF
statement for the file. If the volid is specified on both LABELDEF and FILEDEF,
the more recent specification is used. If no volid is specified, it is not checked.
After checking the volid, the tape is positioned and the HDR label is processed.
For processing multifile volumes, you may wish to use the LEA VB option on the
FILEDEF command. This option prevents a tape from being rewound and
positioned before each tape file is processed. The LEA VB option does not exist on
an OS DD statement.

For input files, HDR2 and EOF2labeis are skipped. There is no merge of
information from a HDR2labei with information in the DCB as there is under an
OS/VS operating system. Output HDR2/EOF2 records are written from
information in the DCB and the CMSCB (FCBSECT). Note that the tape density
and TRTCH fields in HDR2/EOF2 records are taken from what the user specifies
in his FILEDEF command for the tape file. They may not correspond to the actual
density and TRTCH fields used to write the tape.

To process standard user labels in OS simulation, you must do the following:

1. Specify the file as SUL in a FILEDEF command.

2. Provide a routine to process the user standard labels in your program.

3. Put the address of the user label routine in the DCB EXIT list of the DCB for
the file. See the IBM publication OS/VSl Data Management Services Guide or
OS /VS2 MVS Data Management Services Guide, for instructions on how to
establish a DCB EXIT list, and the exact linkage for communication between
user label routines and the operating system. This exact linkage should be used
under CMS with the following exceptions:

a. There is no support for code x'06' EOV EXIT routine.

b. For input labels, return codes 8 and 12 from the user routine are not
supported. If an input return code is not 0, it is treated as if it were 4.

4. Note that your standard user label routines do not perform any input/output.
They set up an output label for writing, but the CMS tape label processing
routines actually write out the label. For input, the CMS label processing
routines read in your user standard label but then give control to your routine
to check the label.

You should specify NL in the FILEDEF command when you expect a tape does
not contain any IBM standard tape labels. CMS reads your tape at the time a file

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-13

Bypass Label (BLP) Processing

Label Off (LAB OFF) Processing

is opened and does not open the file if the tape contains a VOLllabel as its first
record. If the tape does not contain a VOLllabel, a file is opened and the tape is
positioned by using the position parameter (n). For example, if you specify:

filedef fileq tap1 nl 2

fileq is not opened if the tape on tapl (181) has a VOLllabel. If the tape does
not have a VOLllabel, fileq is opened and the tape is positioned at the second file.
If you do not specify a position parameter, the tape is positioned at the first file,
(that is, the load point).

You should specify BLP in the FILEDEF command to bypass tape label
processing. CMS does not check your tape for an IBM standard tape label. It uses
the position parameter you specified to position the tape during open processing" If
you do not specify a position parameter, the default is 1. For example:

filedef fileabc tape 1 blp 4

positions the tape at the fourth file when it opens fileabc. Because CMS does not
know whether files on the tape are label files or data files, the tape is positioned at
what is physically the fourth file, regardless of file content. Any label files on the
tape are included in counting files.

You should specify LABOFF in the FILEDEF command if you want no
positioning or label processing to occur during open processing. The position
parameter is not valid f()r LABOFF. If you specify LABOFF, and your tape is
positioned at record 6 in the third file before you issue an OPEN macro, the tape is
positioned at exactly the same record after open processing (record 6 in the third
file). The following FILEDEF command does not move tape2 (182) before
processing the data in fileb:

filedef fileb tap2 laboff

Nonstandard Label (NSL) Processing

6-14 VM/SP eMS User's Guide

In order. to process' nonstandard labels, you must write your own routine to read,
write, and check the labels. If you have such a routine as a CMS TEXT or
MODULE file, you put the filename of the routine after the NSL keyword
parameter in the FILEDEF command for the file. The filename must be the name
of the first CSECT in the program. It is to this point that control is transferred
when the NSL routine gets control. If you do not have a TEXT or MODULE file
with the NSL filename you specify, you get an error message. The OPEN and
CLOSE routines will load your module if it is not already in storage and will pass
control to it at the time they are opening or closing the file. Your routines will then
be responsible for processing the tapelabels. Nonstandard label routines must do
the actual reading and writing of tape labels as well as checking and setting up the
label. This is one of several ways nonstandard label processing is different from
standard user label processing. Because the CMS label processing routines do not
know the size or format of your nonstandard labels, they cannot read or write the
labels.

If you use a MODULE file for an NSL routine, it is important that you create the
MODULE file so that it starts at an address that will not allow it to overlay the
. program or command you are executing at the time the NSL routine is invoked.

The reason for this restriction is that the NSL routine is dynamically loaded while
your program is executing. For the T APEMAC and T APPDS commands, starting
the NSL routine at an address above X'21000' prevents such an overlay. If the
NSL routine is invoked from your own program which is running in the user area,
you must determine how big your program is and where the NSL MODULE file
should be located to prevent overlay. Note that you do not have to specify a
starting address for NSL routines that are TEXT files. The CMS loader loads such
files for you at an address that does not cause an overlay.

Although any user may write his own NSL routine, it is expected that a system
programmer will usually write such routines and then other programmers in the
installation will use them. Before writing an NSL routine, read the Introduction to
CMS, Interrupt Handling, and CMS Functional Information sections in Part 3 of
the VM/SP System Programmers Guide. In order to ensure proper communication
with the CMS system routines, you must use the linkage described below when you
write nonstandard label routines.

When an NSL tape label processing routine gets control, register 1 points to a
16-byte parameter list with the following format:

,te 0 r--T~;;--T--c;ii;;--T--T;;;-~~d;:--T--;;~;;~;d--1
call i id I Set Byte 1 I --------L----------L--------------L------------I

~te 4 lAPID 1
---1

~te 8 FCBSECl address I
---1

~te 12 DCB address I L ___ J

-lID parameter
for

I TAPEMAC and
1 TAPPDS

_J

The Type call field is a code telling the type of label processing being done:

x'OO' is OPEN input
x'04' is OPEN output
x'08' is CLOSE input
x'OC' is CLOSE output
x' 10' is End Of Tape output

The Caller id is a one-byte code which is one of the following:

x'80'
x'20'

Call by OS simUlation
Call by CMS TAPEMAC or TAPPDS commands

Tape modeset byte is used to communicate with the CMS tape I/O routines. It is a
one byte hexadecimal code that depends on the type of tape (7 or 9 track), tape
density, etc. For further information on the Mode Set, see the TAPE command
description in the VM / SP CMS Command and Macro Reference. (You probably
will pass this byte to the CMS tape controlling module to read and write your tape
labels and will never need to know what its codes mean.)

FCBSECT address is the address of the CMSCB (FCBSECT) for the tape file you
are processing.

DCB address is the address of the DCB for the tape file you are processing.

Note: For the T APEMAC and T APPDS commands, the same interface is
used, except that instead of the FCBSECT and DCB address fields, the
eight character identifier specified in the ID=identifier field in the

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-15

command is passed. This identifier enables you to identify which file you
are processing since the T APEMAC and T APPDS commands do not work
with CMSCBs or DCBs.

Control is passed to your NSL routine by a BALR 14,15 instruction so register 15
contains the address of your routine when you receive control. Register 14
contains the address you should return to when you are finished processing the
nonstandard labels. You can return with a BR 14 instruction. When you receive
control, register 13 points to a save area in which to store the callers register. The
save area linkage is standard OS/VS linkage. You receive control with a PSW key
of X'E' which allows you to modify only user storage. When you are finished

. processing, place a code in register 15 to the CMS label processing routine that
called your routine. Place the value 0 (zero) in register 15 if there have been no
errors and you want processing to continue normally and the data set to be opened.
If you return a nonzero value in register 15, a message is issued to your terminal
and the data set is not opened.

If you write the following FILEDEF statement:

filedef tapf1 tap1 nsl readlab

and have a program called READLAB asa MODULE or TEXT file, your program
will receive control when the data set called tapfl is opened. When your program
gets control, register 1 contains the address of the parameter list described above.
Using the data in this parameter list, you are able to read or write your own tape
header labels. When the same data set is closed, your program again receives
control and you can read or write your own trailer labels. Your program can test
whether it is getting control for OPEN or CLOSE by examining the type call byte
in the parameter list passed to you. If the type call byte is x' 10', your NSL routine
is being invoked while'you are writing an output data set and you have reached the
reflective mark that iridicates end of tape. You may wish to do special processing
in this case. See the "End of Tape" and "End of Volume" section in this
publication for further information on end of tape processing.

l)ifferences Between Tape Label Processing Under OS/VS and OS Simulation in eMS

6-16 VM/SP eMS User's Guide

There are a few minor differences in the way CMS OS simulation processes tapes
and the way OS/VS processes them. These differences are listed below.

• If you are using OS/VS and you do not specify any label parameter on your
JCL statement, the default is SL or standard labels. When you use OS
simulation under CMS and do not specify any label information on a
FILEDEF statement, the default is LABOFF. LABOFF turns off label
processing and nothing is done to position the tape or process labels. Thus, if
you specify no label'information on FILEDEF, the system will process your
tape files exactly the same way they are processed on a CMS system that has
no tape label processing facilities.

• You must specify CLOSE to process all trailer labels. No automatic CLOSE
occurs at end of data or after reading a tape mark. There is no EOV monitor
to process labels before a data set is closed. If an input tape is positioned at an
EOPl or EOVI record when CLOSE is issued, the label is processed. If a tape
file is closed before all data records are read, the trailer label is not processed.
Output tapes have EOP records written only at CLOSE time.

• There is no deferred label processing under OS simulation in CMS.

• When the user has not specified a block count routine in his DCB EXIT list
under OS/VS, the program abends when a block count error occurs. Under
CMS, this condition produces a message that asks whether or not to abend the
operation.

• Certain fields in HDRI and EOFllabels default to values different from those
under OS/VS. These values can always be specified in a LABELDEF
command if the user does not like the default values. For example, the default
for data set name in an output label under OS simulation is DDNAME and not
DSNAME. The default data set sequence number is always one even when the
data set is not the first data set on the tape. The default volume sequence
number is always one. Read the section on the LABELDEF command in this
manual to learn what the default values are under CMS. You can find what
default values are in OS/VS by reading the IBM publication OS/VS Tape
Labels.

Note: You can always get exactly what you want written on a tape label by
explicitly specifying the field on a LABELDEF command. For example, you
can specify DSNAME as FID on such a command and have it written in the
label instead of DDNAME.

• Default volids (when you do not specify a volid in a LABELDEF or FILEDEF
statement) in output HDRI and EOFI records under CMS will be CMSOOI
and will not be the actual volume serial in the VOLI record already on the
tape. It is recommended that you always specify the volid in FILEDEF or
LABELDEF to be sure the information written is correct.

• Expiration date specification is always done in absolute form rather than by
retention period. You must always use the form yyddd where yy is the year
(0-99) and ddd the day (0-366). CMS does not handle expiration dates
specified by retention periods.

• When CMS reads a HDRllabel and finds an unexpired file, it always issues a
message allowing you to enter "ERROR" or "IGNORE." "ERROR" prevents
opening the file in OS simulation. When the DISP MOD option of the
FILEDEF command is specified for SL tapes, "IGNORE" allows you to have
the tape positioned at the end of the file, ready to add new records. Otherwise,
"IGNORE" causes the existing record to be overwritten.

• The NSL routine linkage is quite different under CMS than in OS/VS. (See
the section "NSL Processing" for details.)

• Volume serial number verification occurs every time a file on a tape is opened
under OS simulation unless the FILEDEF LEA VB option is used for multifile
tapes.

• Existing VOLllabels are not automatically rewritten for density
incompatibility in CMS as they are in OS/VS.

• HDR2 records are skipped for input under CMS for OS simulation. They are
not checked and information in them is not merged with DCB information.
HDR2 records are written (with information obtained from the DCB) on
output.

• Blank tapes used for output in CMS cause the tape to run off the reel if you
define the tape file as SL or NL. The tape label processing routines try to read

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-17

an existing VOL1 or HDR11abei before writing on the tape. Therefore, you
should always use the CMS TAPE command to write at least one tape mark
(for NL tapes) or a VOL1labei (for SL or SUL tapes) before using the tape to
write an output data set.

• If you specify a position parameter that is too big (that is, there are not that
many files on the tape), the tape will run off the reel in CMS.

• There are no user exits for user standard labels for EOV label processing in
CMS.

• CMS does not support user return codes of 8 and 12 for input standard user
labels. If the return code· from a user routine is not zero after input label
processing, CMS treats it as if the return code was 4. (See the IBM publication
OS/VS1Data Management $ervices Guide or OS/VS2 MVS Data Management
Services Guide for details).

• No count is kept of user standard labels read or bypassed in CMS. If more
than eight such labels exist, the fact is not detected.

User label processing routines do not receive control under CMS when an
abend or a permanent I/O error occurs.

• If a CMS output tape is not positioned at a HDR1labei or a tape mark when
label processing begins, error message 422 is issued. Under OS/VS such
conditions cause an abend.

• TCLOSE with the REREAD option causes a tape to be rewound under CMS
and then forward spaced one file if the tape has standard labels. Under
OS/VS, the tape is backspaced four files and forward spaced one file.
REREAD for unlabelled tapes in CMS always causes a rewind.

For further information on OS/VS tape label processing, refer to the following
IBM publications: OS/VSl Data Management Services Guide, OS/VS2 MVS Data
Management Services Guide, and OS/VS Tape Labels.

For details on end-of-tape/end-of-volume processing under CMS, see the
"End-of-Volume" and "End-of-Tape Processing" section later in this publication.

'.abelProcessing in eMS/DOS

()-18 VM/SP eMS User's Guide

You specify the type of label processing you want in CMS/DOS on a DTFMT
macro in exactly the same way you specify it when you want to run your program
under VSE. See the VM / SP System Programmer's Guide for details on CMS
support for the DTFMT macro.

Labelled tapes are only supported if you use the DTFMT macro. There is no
support for labelled tapes in CMS/DOS for any other type. If you try to read
labelled tapes with aDTFCP or DTFDI macro, input standard IBM header labels
are skipped, but no other input labels are processed. Output tapes with standard
labels have these labels overwritten with a tape mark. All tape work files are
treated as output unlabelled files in CMS/DOS although they are defined by a
DTFMT. Tapes used for such files have a tape mark written as the first record
when the file is opened;

UniabeUed and Nonstandard LabeUed Tapes

Standard LabeUed Tapes

You define an unlabelled tape with the DTFMT parameter FILABL=NO. The
tape file is processed as having no labels.

You define a nonstandard labelled tape with the DTFMT parameter
FILABL=NSTD. You also must provide a routine to process your nonstandard
labels in the LABADDR=parameter of the DTFMT. Tape processing in CMS for
these files is the same as it is under VSE.

You define a standard label tape with the.DTFMT parameter FILABL=STD. You
also must supply a LABELDEF command to specify label description information.
This command replaces the VSE TLBL card and is required for standard label
processing under CMS/DOS. The LABELDEF command is discussed in detail in
the "LABELDEF Command". section later in this publication.

In order to connect the LABELDEF command for a file with the DTFMT for the
same file, you must use the same name to label your DTFMT as you use for a
filename in your LABELDEF command. If you code a DTFMT macro in your
program as:

MT1 DTFMT ... FILABL=STD

you must then supply the following type of LABELDEF command:

labeldef rot1 fid yourfile fseq ...

You can put any description parameters you want on your LABELDJ3F command
but the filename for it must be mtl if you coded MTI as the label on the DTFMT.

After you have set up your DTFMT and LABELDEF, you execute your
CMS/DOS program. HDRllabels are checked or written when an OPEN macro
is issued. EOFllabels are checked or written when a CLOSE macro is issued. A
VOLllabel volume serial number is checked only if the tape is positioned at load
point when the label processing begins and if you have specified a VOLID
parameter on a LABELDEF statement for the file. Note, if NOREWIND is not
specified in the DTFMT macro for the file, the tape is rewound so it is positioned
at load point for label processing.

If you want to process user standard labels as well as standard labels in CMS/DOS,
you specify FILABL=STD and also supply a LABADDR parameter in the
DTFMT for the file. Control is then transferred to your label processing routines
after standard labels are processed. The linkage to user standard label routines is
exactly the same as in VSE.

Differences Between Tape Label Processing Under VSE and eMS/DOS

There are minor differences in the way tapes are processed by CMS/DOS and the
way they are processed by VSE. These differences are:

• The tape error messages are CMS error messages and not VSE error messages.
In some cases VSE allows the system operator to reply NEWT AP to an error
message. The system then waits for the operator to mount a new tape and
continues processing with this new tape. Such a reply is never possible under

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-19

6-20 VM/SP eMS User's Guide

CMS/DOS. In CMS/DOS, you usually can reply IGNORE to ignore a tape
label error condition or CANCEL to cancel a job. NEWT AP is never allowed.
In a few cases, CMS/DOS allows an IGNORE reply where VSE does not.

• You must specify CLOSE to process all trailer labels. No automatic CLOSE
occurs at end of data or after reading a tape mark. If an input tape is
positioned at an EOFl or EOVl record when CLOSE is issued, the label is
processed. If a tape file is closed before all data records are read, the trailer
label is not processed. Output tapes have EOF records written only at CLOSE
time. For nonstandard labelled tapes, your own routines do not receive control
on input when a tape mark is read. You must issue a CLOSE macro in your
EOF ADDR routine in order to have the trailer labels processed.

• Certain fields in HDRl and EOFllabels default to values different from those
in VSE. For example, the default volume serial number written in a HDRl
label is CMSOOl and not the actual volume serial number (volid) in the VOLl
label already on the tape. The default file sequence and volume sequence
numbers are always one even when the· file is not the first file on the tape. You
should read the section on the LABELDEF command in this publication to
learn what the default values are in CMS/DOS. You also can read the IBM
publication VSE/AF Tape Labels to find what the default values are for VSE.
If you do not like the default values, you can always specify the exact values
you want in label fields in a LABELDEF command.

• Expiration date specification is always done in absolute form rather than by
retention period. You must always use the form yyddd where yy is the year
(0-99) and the ddd the day (0 .. 366). CMS does not handle expiration dates
specified by retention periods.

• VOLllabels written-in the wrong density are not rewritten automatically by
CMS/DOS as they are by VSE.

• Blank tapes should not be used for tape files specified as FILABL=STD in
CMS/DOS; they will run off the reel. Use the CMS TAPE command to write
a VOLllabel or a tape mark on a blank tape before using it for a STD file.

• Not all tape movement and label checking that occurs in VSE occurs under
CMS. For example, when opening an output file, a VSE system expects the
tape to be positioned at a HDRllabel or a tape mark. It then backspaces the
tape to read the last EOFllabel on the tape. If it does not find the label it
expects, it issues an error message. This check is not performed by
CMS/DOS. If the tape is not positioned at a HDRllabel or a tape mark when
output open processing begins, error message 422 is issued.

• After an EOVllabel is written (see "End-of-Tape/End-of-Volume
Processing" later in this publication), the tape is always rewound and unloaded
under CMS/DOS. VSE lets a DTFMT parameter control whether or not the
tape is rewound.

• User label processing routines do not receive control when an I/O error occurs
under CMS/DOS.

• Control is not passed to user standard label routines in CMS/DOS when EOT
has been sensed on output and an EOVllabel has been written by the system
routines.

CMS TAPESL Macro

• Work tapes are not checked for an expiration date when they contain standard
labels under CMS/DOS. If a tape is to be opened as a work tape, CMS/DOS
tests to see if it contains a VOLllabel. If it does, a dummy HDRllabel and a
tape mark are immediately written on the tape after the VOLllabel. If the
tape does not contain a VOLI label, a tape mark is written at the beginning of
the tape. VSE checks expiration dates on previously labelled tapes used as
work tapes and gives the operator a chance to reject the tapes if the expiration
date has not expired.

For further information on VSE and CMS/DOS tape label processing, refer to the
IBM publications, VSE/AF Tape Labels and VSE/AF Macro User's Guide.

The T APESL macro is provided for use in CMS programs that do not use OS and
DOS simulation features. You can use the CMS TAPESL macro to process IBM
standard HDRI and EOFllabels without using DOS or OS OPEN and CLOSE
macros. You will probably use TAPESL with the RDTAPE, WRTAPE, and
TAPECTL macros.

TAPESL processes only HDRI and EOFllabels. It does not perform any
functions of opening a tape file other than label checking or writing. The T APESL
macro generates linkage to the CMS tape label processing routine that actually
processes the label. The macro generates a block of data (32 bytes long) in order
to communicate with the tape label processing routines. T APESL is used both to
check and to write tape labels. A LABELDEF command must be issued prior to
running the program that contains this macro. The LABID parameter of the
TAPESL macro is used to specify the name of the LABELDEF to be used. For
example, if you use the macro:

TAPESL HOUT,181,LABID=GOODLAB

in your assembly language program, you must supply a LABELDEF command for
GOODLAB:

labedef goodlab fid file10 fseq 4 exdte 78235

The tape must be positioned correctly (at the label to be checked or at the place
where the label is to be written), before you issue the macro. TAPECTL may be
used to position the tape. T APESL reads or writes only one tape record unless you
specify SP ACE= YES for input. Then it spaces the tape to beyond the tape mark
that ends the label file. TAPESL reads and checks a tape VOLllabel provided the
tape is positioned at load point and the user has specified a volid in his
LABELDEF command.

Tape Label Processing by CMS Commands

There are three types of CMS commands that do some type of tape label
processing. They are:

• TAPEMAC and T APPDS commands
• TAPE command
• MOVEFILE command

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-21

TAPEMAC and TAPPDS Commands

T APEMAC and T APPDS have operands where you can indicate the type of label
processing you want. The tape must be positioned properly (at the data file or
label file you want) before you issue the command. The TAPE command may be
used for positioning. A separate LABELDEF command is required for these
commands if mM standard label checking is desired. If SL label type is specified
without a labdefid, standard header labels are displayed on the terminal but not
checked by the CMS label processing routines. The command:

tapemac macfile SL (tap2

displays any standard labels that exist on your terminal while the series of
commarids:

1abeldef maclab fid macro volseq 2 crdte 77102
tapemac macfile sl maclab (tap2

invokes the CMS tape label processing routines. These routines check to see that
your tape has a HDRllabel that has a file identifier of macro, a volume sequence
number 2, and a creation date of 77102. VOL 1 labels are not checked during label
processing by TAPEMAC.and TAPPDS unless the tape is positioned at load point
and you have specified a volid on your LABELDEF command.· The DVOL1
function of the TAPE command can be used for volume verification before
positioning the tape if the user does not want to start at the first file. These
commands process only HDRI labels; they skip HDR2, UHL, and all trailer labels
without processing them.

To process nonstandard tape labels with TAPEMAC and T APPDS, you use the
same interface described in the section "NSL Processing under OS Simulation."
The only difference is that instead of putting the CMSCB and DCB addresses in
the parameter list, the ID parameter you placed in the command line is passed to
your NSL routine.

tappds pdsfi1e cmsut1 * ns1 superck id XYZ12345

passes the EBCDIC identifier XYZ12345 to your nonstandard label checking
routine called SUPERCK. This identifier may be up to eight characters long and is
left justified in bytes 8-15 of the parameter list. You can use the identifier to
inform your NSL routine of what file you are processing.

Tape Command DVOLl and WVOLl Functions

6-22 VM/SP eMS User's Guide

Use the DVOLI function of the CMSTAPE command to display the VOLllabel
of a tape on your terminal. You may use this command to ensure the system
operator has mounted the correct tape before you begin processing the tape. If the
tape does not have a VOLl label and you issue the CMST APE command, you are
informed that the VOLllabel is missing. Do not use TAPE DVOLI if you have a
blank tape. If TAPE DVOLI is issued and a blank tape is used, CMS will search
the entire tape to find the label record; since the tape is void of any records, the
tape will run off the end of the reel.

Use the WVOLI function on the TAPE command to write a VOL 1 label on a tape.
You can specify a one- to six-character volume serial number (volid) through this
command and also a one- to eight-character owner field.

MOVEFILE Command

UBELDEF Command

You can use the MOVEFILE coinmand to move labelled tape files if these files are
defined as labelled by the FILEDEF command. The MOVEFILE command
supports only SL, NSL, BLP, NL, and LABOFF processing. SUL files are
processed as SL files and no user exits are taken.

You can also use the MOVEFILE command to display tape labels on your terminal
if you want to see what these labels look like. The following sequence displays the
VOL1 and first HDR1 labels on tap4 if the tape has standard labels:

filedef in tap4
filedef out term
tape rew (tap4
move in out

The LABELDEF command is used to specify the exact data you want written in
certain fields of a HDR1 or EOF1 tape label for output. It can also be used to
specify fields in the same labels that you want checked on input. If you do not
explicitly specify a field for output, a default value is used. If you do not explicitly
specify a field for input, the field is not checked. For example:

labeldef abc fid master volseq 1 exdte 77364

used for input tells CMS to check the file identifier volume sequence number and
expiration date in an input HDRllabel. No other fields in the label are checked.
The same specification used for output causes the HDRllabel to have MASTER
written in the file identifier field, 1 written in the volume sequence number field
and 77364 written in the expiration date field. Default values are written in the
HDRI fields that are not specified.

Default values for HDRllabels are as follows:

FID for OS simulation, the DDNAME (Specified on FILEDEF)
for CMS/DOS, the DTFMT symbolic name
for CMS T APESL macro, the LABELDEF id (LABID=labeldefid)
parameter

VOLID CMS001

VOL SEQ 0001

FSEQ 0001

GENN blanks

GENV blanks

CRDTE current date that label is written

EXDTE current date that label is written

SEC 0

The filename on the LABELDEF command is used to connect your label definition
to a file defined elsewhere. This is why you specify different data for file name

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-23

depending on the type of tape label processing you are doing. Filename is
DDNAME for OS simulation, DTFMT symbolic name for CMS/DOS and
labeldefid for T APESL.

The LABELDEF command takes the place of the VSE TLBL statement for
CMS/DOS.

End-of-Volume and End-of-Tape Processing

6-24 VM/SP eMS User's Guide

There is no true end-of -volume support available with CMS tape label processing.
FEOV instructions are not supported under OS simulation and there is no
automatic volume switching. Multivolume files are not supported. The following
features exist to aid the IBM standard label tape user when he reaches end-of-tape
on output or an EOV label in input. These are the only ways in which CMS
supports EOV processing.

Input - When a CLOSE macro is issued or when a T APESL macro processes
an input trailer label, a message is issued if the label read is an EOVllabel
instead of an EOFI label. The EOVI label is then processed exactly as if it
were an EOFllabel. You must request that the operator mount a new tape
and reopen a file if you want to continue processing the data.

Output - Under CMS/DOS and OS simulation processing only (that is, the
processing does not occur for TAPESL or CMS commands), the following
limited EOV processing occurs:

1. If you specify that you have an IBM standard label tape file, a single tape
mark is written to end your data. This occurs when end-of-tape is sensed
on output while you are using regular access method macros to write the
file. The tape mark is written immediately after the record that caused the
EOT to be sensed. Following this tape mark, CMS writes an EOVllabel
and a single tape mark. It then rewinds and unloads your tape. A message
is issued telling you that an EOVI label was written. If you specified
nonstandard labels instead of writing the EOVI label, an exit to the
nonstandard label routine you specified for the file is taken after the
end-of-data tape mark is written. For BLP or NL files, only the ending
tape mark is written.

2. CMS/DOS jobs are always canceled after an EOT condition is detected on
output. In order to continue processing the tape, you must have a new tape
mounted, run the same job over again or run a new job and reopen the file.

3. OS simulation programs that use QSAM or contain a BSAM CHECK
macro cause an abend when EOT is detected, with code 001 after an error
message. A BSAM program that does not use a CHECK macro has no
way of detecting the EOT condition. Such a program continues to try to
write on the tape after it is rewound and unloaded. The program enters a
wait state rather than continue running to a normal or abnormal
completion. Therefore, you should always include a BSAM CHECK
macro after the WRITE if you expect your program to reach end-of -tape.
OS simulation users are also responsible for completing processing on a
new tape with the same or a new job after an EOT is detected.

4. If you are a CMS/DOS user you always get the automatic output
end-of-tape processing described above. However, if you are an OS

Error Processing

simulation user and do not want CMS to do any special end-of-tape
processing, you can suppress it by using the NOEOV option on your
FILEDEF command for the file. If you enter:

fi1edef dd1 tap3 sl (noeov

no tape marks or EOVl1abeis are written when EOT is sensed on output.
Your tape is not rewound and unloaded. However, the program causes an
abend if you use QSAM or include a BSAM CHECK macro after your
WRITE macro. Without a CHECK macro, a BSAM program runs the tape
off the reel when EOT is sensed and NOEOV is specified.

When the standard label processing routines find errors or discrepancies on tape
labels, they send a message to the CMS terminal user who is processing the tape.
After an error message is issued, the user can ask the system operator to mount a
new tape, use the CMS TAPE command to position the tape at a different file, or
respecify his label description information. If you are a terminal user and want
another tape mounted, you send the system operator a message telling him what
tape to mount.·

Some errors cause program termination and others Cio not. The effect of tape label
processing errors depends on both the type of error'and the type of program (that
is, CMS/DOS, OS simulation, eMS command, etc.) that invokes the label
processing. The following are general guidelines on error handling:

• Messages identifying the error are always issued.

• Under OS simulation, tape label errors result in open errors. These errors
prevent a tape file from being opened. They do not necessarily end a job.
Errors in trailer labels (except block count errors) have no effect on
processing.

• In CMS/DOS, the terminal user is generally given two choices: ignore the
error or cancel the job. The new-tape option is not allowed.

The CMS commands TAPEMAC and TAPPDS terminates with a non-zero
return code after a tape label error.

• Certain error situations such as unexpired files and block count errors for OS
simulation allow the user to ignore the error and do not cause open errors. In
these cases, the user enters his decision at the terminal after he is notified of
the error.

• Errors that occur during the loading of an NSL routine cause an abend (code
155 or 15A). A block count abend gives an error code of 500.

In all cases, after an error has been detected and diagnosed, you must decide what
to do. You may wish to have a new tape mounted and then re-execute the
command or you may want to respecify your LABELDEF description if it was
incorrect. You can also use the TAPE command to space the tape to a new file if it
was positioned incorrectly.

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-25

The MOVEFILE Command

The MOVEFILE command can copy sequential tape files into disk files, or
sequential disk files onto tape. It can be particularly useful when you need to copy
a file from a tape and you -do not know the format of the tape.

- ~ ~ . . ,

To use -the MOVEF1LE command, you must fitstdefine the input and 'output files'
using the FILEDEF co1ll1lland. For example, to copy a file from a tape attached to
your virtual machine at virtual address 181 to a CMS disk, you would enter:

filedef input tap1
filedef output disk tape file a
rnovefile input output

This sequence of commands creates a file named TAPE FILE AI. Then use CMS
commands to manipulate and examine the contents of the file.

MOVEFILE can also be used to display tape labels and/or move labelled tape
files. See "Tape Labels in CMS" for details.

Tapes Created by OS Utility Programs

IEBPTPCH:

IEBUPDTE:

6-26 VM/SP eMS User's Guide

The CMS command T APPDS can read OS partitioned and sequential data sets
from tapes created by the IEBPTPCH, IEBUPDTE, and IEHMOVE utility
programs. When you use the T APPDS command, the OS data set is copied into a
CMS disk file, or in the case of partitioned data sets, into multiple disk files.

Sequential or partitioned data sets created by IEBPTPCH must be unblocked for
CMS to read them. If you have a tape created by this utility, each member (if the
data set is partitioned) is preceded with a card that contains
"MEMBER=membername." If you read this tape with the command:

tappds *

then, CMS creates a disk file from each member, using the membername for the
filename and assigning a filetype of CMSUT 1. If you want to assign a particular
filetype, for example TEST, you could enter the command as follows:

tappds * test

If the file you are reading is a sequential data set, you should use the NOPDS
option of the TAPPDS command:

tappds test file (nopds

The above command reads a sequential data set and assigns it a file identifier of
TEST FILE. If you.do not specify a filename or filetype, the default file identifier is
TAPPDS CMSUT1.

Tapes in control file format created by the IEBUPDTE utility program can be read
by CMS. Data sets may be blocked or unblocked, and may be either sequential or
partitioned. Since files created by IEBUPDTE contain ./ ADD control cards to
signal the addition of members to partitioned data sets, you must use the COLI

IEHMOVE:

option of the T APPDS command. Also, you must indicate to CMS that the tape
was created by IEBUPDTE. For example, to read a partitioned data set, you
would enter the command:

tappds * test (update co11

The CMS disk files created are always in unblocked, 80-character format.

as unloaded partitioned data sets on tapes created by the IEHMOVE utility
program can be read either by the TAPPDS command or by the TAPEMAC
command. The T APPDS command creates an individual CMS file from each
member of the PDS.

If the PDS is a macro library, you can use the TAPEMAC command to copy it into
a CMS MACLIB. A MACLIB, a CMS macro library, has a special format and can
usually be created only by using the CMS MACLIB command. If you use the
T APPDS command, you have to use the MACLIB command to create the macro
library from individual files containing macro definitions.

Specifying Special Tape Handling Options

For most of the tape handling that you do in CMS, you do not have to be
concerned with the density or recording format of the magnetic tapes that you use.
There are, however, some instances when it may be important and there are
command options that you can use with the TAPE command MODE SET operand
and with ASSGN and FILEDEF command options.

The specific situations and the command options you should use are listed below.

• If you are reading or writing a 7-track tape and the density of the tape is either
200 or 556 bpi, you must specify DEN 200 or DEN 556.

• If you are reading or writing a 7 -track tape with a density of 800 bpi, you must
specify 7TRACK.

• If you are reading or writing a 7-track tape without using the data convert
feature, you must use the TRTCH option.

• If you are writing a tape using a 9-track dual density tape drive with the
9TRACK option specified, and you want the density to be 800 (on an
800/1600 drive) or 6250 (on a 1600/6250 drive), then you must specify DEN
800 or DEN 6250.

• If you are writing a tape, the default tape block size is 4096 bytes plus a 5-byte
header. This format is not compatible with previous VM/370 systems.
Therefore, if you want to write a tape compatible with previous VM/370
systems, you must use the "BLKSIZE 800" option of the TAPE command.
The TAPE command is described in detail in VM/SP CMS Command and
Macro Reference.

Chapter 6. Using Real Printers, Punches, Readers, and Tapes 6-27

6-28 VM/SP eMS User's Guide

I Chapter 7. Communicating with Other Computer Users

I What is a Names File?

I Creating a Names File

Using CMS commands, you are able to send information (files, messages, and
notes) to other computer users and to receive information from them. You can
collect the necessary information about other computer users with whom you
communicate to keep in your "userid NAMES" file. The following CMS
commands reference the NAMES file created via the CMS NAMES command:

NAMEFIND Display /Stack information from a NAMES file.

NOTE Prepare a "note" for one or more computer users, to be sent via the
SEND FILE command.

RECEIVE Read onto disk, a file or note that is in your virtual reader.

SEND FILE Send files or notes to one or more users on your system or a system
that is attached to yours via Remote Spooling Communications
Subsystem (RSCS) by issuing the command or by using a menu
(display terminal only).

TELL Send a message to one or more computer users who are logged on
to your computer or to one attached to yours via RSCS.

A names file is a collection of information about other users with whom you
communicate. Having a names file makes it easier for you to communicate with
others because you can assign nicknames to them. An "entry" in a names file
contains all of the information associated with a a particular nickname that you
enter on one menu. You can also create an entry for a list of names, where the
nickname would refer to the whole list.

The first entry in your names file, should be for yourself. The information will be
used for note headings, which are discussed later on. To display the names screen,
enter:

names

When you enter NAMES, your userid appears (automatically) in the first line. The
following is an entry in the file "ZOOKEEP NAMES."

Chapter 7. Communicating with Other Computer Users 7-1

====> ZOOKEEP NAMES <========> N A M E S FILE EDITING <====
Fill in the fields and press a PFkey to display and/or change your NAMES file

Nickname: ZOO Userid: ZOOKEEP Node: CITYZOO
Name: Zoo.Keeper

Notebook:

Phone: 123-4567
Address: City Zoo

List of Names:

You can enter optional information below. Describe it by giving it a "tag."

Tag:
Tag:

1= Help 2= Add
7= Previous 8= Next.

====>

Figure 7-1. Sample NAMES Screen

Entering a List of names

7-2 VM/SP eMS User's Guide

Value:
Value:

3= Quit
9=

4= Clear
10= Delete

5= Find
11=

6= Change
12= Cursor

MACRO-READ 1 FILE

The list of names is something like a distribution list. If you send notes, files, or
messages to groups of people, you can create an entry in your names file for each
group. In this case, the nickname represents the name that you want to call this
list. You can specify the names of the people in the list in the following ways:

• as a nickname of an entry in the names file;
• as a userid of a user who shares your computer;
• in the form "userid AT node."

Each time you send a note, a file, or a message to the nickname specified, it will go
to everyone on this list. The following menu shows an entry for a list of names.
Each name in the list is the nickname of an entry in the names file.

====> ZOOKEEP NAMES <========> N A M E S FILE EDITING <====
Fill in the fields and press a PFkey to display and/or change your NAMES file

Nickname: ANIMALS Userid: Node: Notebook:
Name:

Phone:
Address:

List of Names: BEAR LION MONKEY

You can enter optional information below. Describe it by giving it a "tag."

Tag: Value:
Tag: Value:

1= Help 2= Add 3=
7= Previous 8= Next 9=

====>

Fagure 7-2. Sample Entry for a List of Names.

I Entering Chained Lists of Names

Quit 4= Clear
10= Delete

5= Find
11=

6= Change
12= Cursor

MACRO-READ 1 FILE

Use chained Lists of Names, to allow many users to be included in the List of
Names tag. For this example, there is an entry in the ZOOKEEP NAMES file
called BIRDS containing a List of Names as shown in Figure 7-3 .

====> ZOOKEEP NAMES <========> N A M E S FILE EDITING <====
Fill in the fields and press a PFkey to display and/or change your NAMES file

Nickname: BIRDS Userid: Node: Notebook:
Name:

Phone:
Address:

List of Names: OWL SWAN TURKEY

You can enter optional information below. Describe it by giving it a "tag."

Tag:
Tag:

1= Help 2= Add
7= Previous 8= Next

====>

Value:
Value:

3= Quit
9=

Figure 7-3. Another Sample Entry for a List of Names.

4= Clear
10= Delete

5= Find
11=

6= Change
12= Cursor

MACRO-READ 1 FILE

Chapter 7. Communicating with Other Computer Users 7-3

Figure 7-4 shows how BIRDS and ANIMALS can be represented by two
nicknames. Each name in the list is the nickname of an entry in the names file.

====> ZOOKEEP NAMES <========> N A M E S FILE EDITING <====
Fill in the fields and press a PFkey to display and/or change your NAMES file

Nickname: BOARDERS Userid: Node: Notebook:
Name:

Phone:
Address:

List of Names: ANIMALS BIRDS

You can enter optional information below. Describe it by giving it a "tag."

Tag:
Tag:

I

1= Help 2= Add!
7= Previous 8= Next

====>

Value:
Value:

3= Quit
9=

4= Clear
10= Delete

5= Find
11=

6= Change
12= Cursor

MACRO-READ 1 FILE

Figure 7-4. Sample Entry for a Chained List of Names.

TO
NICKNAME

BOARDERS

7-4 VM/SP eMS User's Guide

I If a note is sent to BOARDERS, the following receive the note:

CHAINED
LIST OF NAMES

ANIMALS

BIRDS

ACTUAL
RECIPIENTS

BEAR
LION
MONKEY
OWL
SWAN
TURKEY

I The following represents the ZOOKEEP NAMES file:

:nick.ZOO

:nick.BEAR

:nick.LION

:nick.MONKEY

:nick.ANIMALS

:nick.OWL

:nick.SWAN

: nick. TURKEY

:nick.BIRDS

:nick.BOARDERS

:userid.ZOOKEEP :node.CITYZOO
:name.Zoo Keeper
:addr.City Zoo
:userid.GRIZZLY :node.DEN
:name.I. M. Grizzley
:addr.Den;City Zoo
:userid.COWARD :node.DEN
:name.I.M.A. COWARD
:addr.Lion Den;City Zoo
:userid.MONKEY :node.TREE
:name.T.O.P. Banana
:addr.Banana Tree;City Zoo

:list.BEAR LION MONKEY
:userid.OWL :node.TREE

:phone.123-4567

:phone.123-4567

:phone.123-4567

:phone.123-4567

:name.I. M. Wise :phone.123-4567
:addr.Big Tree;City Zoo
:userid.SWAN :node.SWANLAKE
:name.Grace Full :phone.123-4567
:addr.Swan Lake;City Zoo
:userid.TURKEY :node.COTTAGE
:name.T.TURKEY ;phone.123-4567
:addr.Turkey Coop;City Zoo

:list.OWL SWAN TURKEY

:list.ANIMALS BIRDS

Figure 7 -S. Sample 'userid NAMES' File

Sending Messages

You can send messages to one or more users on your computer or on other
computers that are connected to yours via the Remote Spooling Communications
Subsystem (RSCS) network. The users must be logged on to receive your message.
Because the TELL command references your names file, you are able to use
nicknames. For example:

tell bear There is honey for dessert!

If Bear is logged on, he sees the following message on his screen.

MSG FROM ZOOKEEP: There is honey for dessert!

You can send a message to a list of people when you have a nickname for the list.
For example:

tell animals Good Morning!

sends the message to the list of names for the nickname ANIMAL (BEAR LION,
and MONKEY). They must be logged on to receive your message.

You can also use the CP MESSAGE command to send a message to a user or to
the primary system operator. The recipient must be logged on to receive your
message. Use the CP QUERY userid command to see if another user is logged on.
The CP MESSAGE command does not use your names file. An example of the CP
MESSAGE command using the abbreviation (MSG) is:

cp msg jonescj we are leaving now.

Chapter 7. Communicating with Other Computer Users 7·5

I Receiving Messages

7-6 VM/SP eMS User's Guide

During the course of a terminal session, you can receive many kinds of messages
from VM/~P, from the system operator, from other users, or from your own
programs. r ou candeci~e whether. or n~t -you want to receive these messages. For
elrample,.if you use the command:

cp set msg off

You will not receive any messages sent by the TELL command or the CP
MESSAGE command; if another virtual machine user tries to send you a message,
he receives the message:

userid NOT RECEIVING, MSG OFF

If your virtual machine handles special messages and you do not want to receive
special messages at this time, you can issue:

cp set smsg off

You will not receive any special messages sent by the CP SMSG command; if
another virtual machine user attempts to do so, he receives a message:

userid NOT RECEIVING, SMSG OFF

Similarly, to prevent warning messages (which usually come from the system
operator) from coming to you, you can use:

cp set wng off

However, you would only do this in cases where you were typing some output at
your terminal and did not want the copy ruined. .

VM/SP issues error messages whenever you issue a command incorrectly or if a
command or program fails. These messages have a long form, consisting of the
error message code and number, followed by text describing the error. If you wish
to receive only the text portion of messages with severity codes I, E, and W (for
informational, error, and warning, respectively), you can issue the command:

cp set emsg text

If you want to receive only the message code and number (from which you can
locate an explanation of the error in VM/SP System Messages and Codes), you
specify:

cp set emsg code

You can also cancel error messages completely:

cp set emsg off

To restore the EMSG setting to its default, which is the message text, enter:

cp set emsg text

Some CP commands issue informational messages telling you that CP has
performed a particular function. You can prevent the reception of these messages
with the command:

cp set imsg off

I Sending Notes and Files

I Composing Notes

or restore the default by issuing:

cp set imsg on

The setting of EMSG applies to CMS commands as well as to CP commands.

You can also control the format of the CMS ready message. If you enter:

set rdyrnsg smsg

you receive only the "R;" or shortened form of the ready message after the
completion of CMS commands. If you are not receiving error messages (as
described above) and an error occurs, the return code from the command still
appears in parentheses following the "R."

When you have short communication, like a letter, use the NOTE command to
prepare a "note" to send to one or more users on your computer or on other
computers that are connected to yours via the Remote Spooling Communications
Subsystem (RSCS) network. The person to whom you are sending the note need
not be logged on. The NOTE command references your "userid NAMES" file, so
you can use nicknames when you create your notes.

Entering NOTE name puts you in XEDIT mode. Enter the INPUT subcommand
on the command line and type the body of the note in the space provided. Press
the PF2 key to add lines if you need more space. For example:

note bear

results in a screen as in Figure 7 -6 where the body of the note was entered in the
space provided.

ZOOKEEP NOTE AO F 80 TRUNC=80 SIZE=24 LINE=12 COL=1 ALT=O
OPTIONS: NOACK LOG SHORT NOTEBOOK ALL

Date: 11 February 1981, 11:04:52 EDT
From: Zoo Keeper 123-4567 ZOOKEEP at CITYZOO
To: BEAR at DEN

Dear Bear,
I have some good news. Someone ordered 500 jars of honey.

You can have honey for dessert all month if you like.

1= Help 2= Add line 3= Quit
7= Backward 8= Forward 9=

====>

Figure 7-6. Sample Note with Short Headings

Sincerely,
Zoo Keeper

4= Tab
10= Rgtleft

5= Send 6= ?
11= SpIt join 12= Power input

XED I T 1 FILE

Chapter 7. Communicating with Other Computer Users 7-7

I Sending Q Note

I Continuing a Note

I Keeping a Copies of Notes

I Sending Files

7-8 VM/SP eMS User's Guide

To send the note, you can do one of the following:

Press the PF5 key.

• Enter on the command line, SEND FILE (NOTE or SENDFILE (NOTE OLD

Note: Use the OLD option when recipients do not have the RECEIVE
command available to them so that the file can be DISK LOADed.

Enter SEND (a synonym for "SENDFILE (NOTE").

If you want to save a note and finish it later, enter FILE on the command line. The
note will not be sent. It is saved on your disk as "userid NOTE AO." To continue
the note later on, issue the NOTE command with no parameters.

Each time that you send a note, a copy is kept in a file called ALL NOTEBOOK.
A note is saved by appending it to the NOTEBOOK file. Notes are separated by a
line of 73 equal signs (=). If you want to keep separate notebooks for certain
correspondence, you can:

• Specify a notebook filename with the NOTE command. For example, to save
a note in ANIMALS NOTEBOOK, enter:

note bear (notebook animals

• Specify a notebook filename on an entry in your "userid NAMES" file.

Set up a default notebook filename with the DEFAULTS command. Notes
will go into this notebook unless you have specified a notebook filename with
the NOTE command or if you have specified a notebook filename on the
recipient's entry in your names file. For example to set up the default to save
notes in ANIMALS NOTEBOOK, enter:

defaults note notebook animals

See the VM / SP CMS Command and Macro Reference for information about the
DEFAULTS command.

Use the SEND FILE command to send files and notes to one or more computer
users on your computer or on other computers that are connected to yours via the
Remote Spooling Communications Subsystem (RSCS) network. Since SEND FILE
is one of the commands that references your names file, you can use nicknames to
identify the recipients. The nickname is automatically converted into· node and
userid.

If you know the name of the file that you want to send, you can just enter the file
identification and nickname following the SENDFILE command. For example:

sendfile banana split a to monkey

Otherwise, if you cannot remember the name of the file or if you have many files to
send, enter SENDFILE without operands. When you enter the SEND FILE
command (or the abbreviation SF), a special screen is displayed.

The following is a sample SENDFILE menu:

---------------- SENDFILE ----------------
File(s) to be sent (use * for Filename, Filetype and/or Filemode

to select from a list of files)
Enter filename * filetype data

filemode a

Send files to monkey

Type over YES or NO to change the options:

NO Request acknowledgement when the file has been received?

YES Make a log entry when the file has been sent?

YES Display the file name when the file has been sent?

NO This file is actually a list of files to be sent?

1= Help 3= Quit 5= Send 12= Cursor

====>
MACRO-READ 1 FILE

Figure 7-7. Sample SENDFILE Menu

In Figure 7-7, the sender entered an asterisk for filename, "data" for filetype, and
"a" for filemode. The name of the recipient (MONKEY) is also entered on the
screen. When PF5 (or the ENTER key) is pressed, a special FILELIST screen is
displayed. The files to be sent can be selected from this screen (shown in
Figure 7-8).

ZOOKEEP FILELIST AO V 108 TRUNC=108 SIZE=418 LINE=1 COL=1 ALT=O

Cmd Filename Filetype Fm Format Lrecl
ANIMAL DATA A1 V 95

s BEAR DATA A1 V 95
CAMEL DATA A1 V 107

s LION DATA A1 V 92
MYSTERY DATA A2 V 75

s MONKEY DATA A2 V 120
SWAN DATA A1 V 26
ZOO DATA A1 V 80

1= Help 2= Refresh 3= Quit 4=
7= Backward 8= Forward 9= FL /n 10=
Type'S' in front of each file to be

====>

Figure 7-8. Sample FILELIST Screen Invoked from SENDFILE

Records Blocks Date Time
34 2 10/04/80 21:12:04
29 2 10/04/80 20:58:07

281 10 10/04/80 17:59:00
101 4 10/02/80 15:33:05

28 1 9/25/80 12:10:03
277 10 9/24/80 9:14:02

7 1 9/23/80 16:50:06
489 30 8/26/80 16:05:08

Sort (type) 5= Sendfile 6= Sort(size)
11= XEDIT 12= Cursor

sent, and press ENTER.

XEDIT 1 FILE

Chapter 7. Communicating with Other Computer Users 7-9

I Sending One File

I Receiving Notes and Files

RDRLIST

RDR

CP QUERY RDR ALL

CP QUERY FILES

7-10 VM/SP eMS User's Guide

To send one or more of these files, you can type a letter "s" in front of the
filename of each file you want sent (see above) and then press the ENTER key.
You can also position the cursor on the line describing the file you want to send,
and then press the PFS key.

To send only one file:

1. Enter SENDFILE (or its abbreviation SF).

2. On the SENDFILE menu, enter the filename, filetype and filemode in the
spaces provided. If the filemode is A, you can leave filemode blank.

3. Enter the names of the recipient(s). Remember that you can use nicknames.

4. Select the "YES/NO" options.

S. Press either PFS or the ENTER key to send the file. Pressing:

PFS sends the file and exits from the menu.
the ENTER key sends the file and keeps the menu.

After you logon you might see a message notifying you that you have files in your
reader. For example:

FILES: 004 RDR, NO PRT, NO PUN

During your terminal session if you want to find out if you have files in your virtual
reader you can enter any of the following commands:

Displays information about the files in your virtual reader with
the ability to issue commands from the list.

Generates a return code and either displays or stacks a message
that identifies the characteristic of the next file in your reader.

Lists your reader files (if any) and their characteristics.

Displays the number of spool files in your virtual machine.

For example, when there are no files in your reader:

If you enter:

rdrlist

The system responds:

No files in your reader.
R(00028);

If you enter:

rdr

cp qrdr all

cp q files

The system responds:

READER EMPTY
R;

NORDRFILES
R;

FILES: NO RDR, NO PRT, NO PUN
R;

Using the CMS RDRLIST Command

OHARA RDRLIST
Cmd Filename

PIZZA
COOKIE
$JELLY
DIETING
KEN
SEND
GOOD
Acknowl

I
Entering the CMS RDRLIST command give you a display about the files in your
reader. For example:

A1 V 108 TRUNC=108 SIZE=17 LINE=1 COL=1 ALT=1
Filetype Class User At Node Hold Records Date Time
TOPPINGS PUN A KEN NODE04 NONE 10 10/06 10:39:38
ASSEMBLE PUN A KEN NODE04 NONE 10 10/06 10:25:11
NOTE PRT A KEN NODE04 NONE 7 10/06 10:15:50
TIPS PUN A KEN NODE04 NONE 11 10/06 09:40:28
NOTE PUN A KEN NODE04 NONE 10 10/06 08:43:07
EXEC PUN A BOB NODE02 NONE 2 10/06 07:12:35
DAY PUN A GEOFF NODE02 NONE 29 10/05 11:44:34
edgment PUN A BOB NODE02 NONE 2 10/05 11 :42:21

1=Help 2=Refresh
7=Backward 8=Forward

3=Quit 4=Sort(type) 5=Sort(date) 6=Sort(user)
9=Receive 10= 11=Peek 12=Cursor

====>

Figure 7-9. Sample RDRLIST Screen

I Receiving a File

XEDIT

Some of the commands that you can issue from the list are:

PEEK Displays a file in your virtual reader without reading it onto disk.

RECEIVE Reads onto disk a file or note that is in your virtual reader.

DISCARD Purges a file displayed in the reader list.

If you have issued the RDRLIST command and you want to receive a file:

1. Move the cursor to the line describing the file that you want to receive.

2. Press PF9. A notice will appear on that line, telling you that the file has been
received.

For example:

Chapter 7. Communicating with Other Computer Users 7-11

OHARA RDRLIST A1 V 108 TRUNG=108 SIZE=17 LINE=1 COL=1 ALT=1
Cmd Filename Filetype Class User At Node Hold Records Date Time

PIZZA TOPPINGS PUN A KEN NODE04 NONE 10 10/06 10:39:38

* COOKIE ASSEMBLE recv from Ken at NODE04
$JELLY NOTE
DIETING TIPS

1=Help 2=Refresh
7=Backward 8=Forward

====>

PRT A KEN NODE04 NONE 7 10/06 10:15:50
PUN A KEN NODE04 NONE 11 10/06 09:40:28

3=Quit 4=Sort(type) 5=Sort(date) 6=Sort(user)
9=Receive 10= 11=Peek 12=Cursor

XEDIT

Figure 7-tO. Sample RDRLIST Screen after Receiving a File

I Receiving a Note

7-12 VM/SP eMS User's Guide

If the file in your reader has the same name as a file that is already on your disk,
after you press PF9, you will receive the following message on your RDRLIST
screen:

File 'fn ft fm' already exists.--specify 'REPLACE' option.

If you want to replace the file on your disk, then enter the following in the "emd"
space next to the file that you want to receive:

receive. /(replace

and then press the ENTER key. The file on your disk will be replaced.

If you want to keep the file on your disk, you can either:

• rename the file on your disk (use the eMS RENAME command).

or

• give the file to be read in a new name. For example, enter the following in the
"emd" space. and press the ENTER key:

receive / banana split

You can receive notes in the same way that you receive other types of files. A note
will have a filetype of NOTE. Just move the cursor to the line describing the note
and press PF9.

The note is appended to your ALL NOTEBOOK file, unless you have a notebook
specified in your names file entry for that person. For example, after receiving
$JELLY NOTE, the sample screen would look like the following:

OHARA RDRLIST A1 V 108 TRUNC=108 SIZE=17 LINE=1 COL=1 ALT=1
Cmd Filename Filetype Class User At Node Hold Records Date Time

PIZZA TOPPINGS PUN A KEN NODE04 NONE 10 10/06 10:39:38

* COOKIE ASSEMBLE recv from Ken at NODE04

* $JELLY NOTE added to ALL NOTEBOOK AO
DIETING TIPS PUN A KEN NODE04 NONE 11 10/06 09:40:28

1=Help 2=Refresh
7=Backward 8=Forward

3=Quit 4=Sort(type) 5=Sort(date) 6=Sort(user)
9=Receive 10= 11=Peek 12=Cursor

====>
XEDIT

Figure 7-11. Sample RDRLIST Screen after Receiving a Note

I Discarding a File

I Loading and Purging files

Use the DJSCARD command to purge a file displayed in your RDRLIST file.
Unlike the CP PURGE command, DISCARD allows an acknowledgment to be
sent to the sender (if one was requested). The acknowledgment indicates that the
file was discarded~ DISCARD also makes an entry in your "userid NETLOG" file,
(if the log option was in effect in the RECEIVE command) indicating that the file
was discarded. To discard a file; enter DISCARD on the "Cmd" space next to the
file that you want to discard and press the ENTER key.

Your response from the RDR command might indicate that the file was DISK
DUMPed to you. For example, the response might be:

DISK LOAD TEST1 SCRIPT A1
R(00022) ;

You can enter DISK LOAD to read the file onto your disk.

If after doing a QUERY RDR ALL, you know that you want to get rid of files in
your reader, then you can use the CP PURGE command. For example, if you want
to purge a reader file with a spoolid of 1234, enter:

cp purge rdr 1234

If you want to purge all reader files in a certain class, for example, all Class A files,
then you might enter:

cp purge rdr cl a

Chapter 7. Communicating with Other Computer Users 7-13

Alternate Method of Sending Files

7-14 VM/SP eMS User's Guide

You can send printer, punch, or reader spool files to other users. To send a spool
file, you must know the·userid of the virtual machine at your location that is
running RSCS and the location identification (locid) of the remote location. If you
are sending a spool file to a particular user at the remote location, you should also
know that userid of the user.

The CP commands that you can use to transmit files across the network are TAG
and SPOOL.

• The TAG command allows you to specify the locid and userid of the virtual
machine that is to receive a spool file, or, in the case of tagging a printer or
punch, of any spool files produced by that device.

• With the SPOOL command, you spool your virtual device to the RSCS virtual
machine.

An example of using the CP commands SPOOL, TAG, and the CMS DISK
command to send someone a file is:

cp sp pun net4
cp tag dev pun node04 murphybe
disk dump brian file a1

where net4 is the rscsid of the virtual machine, node4 is the locid, and murphybe is
the userid of the recipient.

After you disk dump the file, You should spool your punch back to yourself.

To spool your punch back to yourself, enter:

sp pun *

The SEND FILE command makes it easier for you to send files to others since you
do not have to use the CP SPOOL and TAG commands each time you send a file.
Refer to the documentation about sending and receiving files earlier in this chapter.

You can also use the CP TRANSFER command to transfer files from your own
virtual reader.

For information on the CP commands SPOOL, TAG, and TRANSFER, refer to
the VM / SP CP Command Reference for General Users.

Part 2: Program Development Using eMS

You can use CMS to write, develop, update, and test:

• CMS programs to execute in the CMS environment

• as programs to execute either in the CMS environment (using as simulation)
or in an as virtual machine

• VSE programs to execute in either the CMS/DOS environment or in a VSE
virtual machine

As you learn to use CMS, you may want to write programs for CMS applications.
Chapter 8, "Programming for The CMS Environment" contains information for
assembler language programmers: linkage conventions, programming notes, and
macro instructions you can use in CMS programs.

The as and VSE simulation capabilities of CMS allow you to develop as and VSE
programs interactively in a time-sharing environment. When your programs are
thoroughly tested, you can execute them in an as or VSE virtual machine under
the control of VM/SP.

Chapter 9, "Developing as programs under CMS" is for programmers who use
as. It describes procedures and techniques for using CMS commands that
simulate as functions.

Chapter 10, "Developing VSE Programs Under CMS" is for programmers who use
VSE. It describes procedures and techniques for using CMS/DOS commands to
simulate VSE functions.

If you use VSAM and Access Method Services in either a VSE or an as
environment, Chapter 11, "Using Access Method Services and VSAM Under CMS
and CMS/DOS" provides usage information for you. It describes how to use CMS
to manipulate VSAM disks and data sets.

The CMS batch facility is a CMS feature that allows you to send jobs to another
machine for execution. How to prepare and send job streams to a CMS batch
virtual machine is described in Chapter 12, "Using the CMS Batch Facility."

You can use the interactive facilities of CP and CMS to test and debug programs
directly at your terminal. Chapter 13, "Debugging Your Program Using VM/SP"
shows examples of commands and debugging techniques.

Part 2: Program Development Using eMS P2-1

P2-2 VM/SP eMS User's Guide

Chapter 8. Programming for The CMS Environment

Program Linkage

This section contains information for assembler language programmers who may
need to write programs to be used in the CMS environment. The conventions
described he~e apply only to CMS virtual machines; you can not execute these
programs under any other operating systems.

Program linkages, in CMS, are generally made by means of a supervisor call
instruction, SVC 202. The SVC handling routine takes care of program linkage for
you. The registers used and their contents .are discussed in the following
paragraphs.

Register

o

1

13

14

Contents

If the command is called from the terminal or from an EXEC 2
EXEC, register 0 points to an extended plist, which contains
addresses referring to the extended command as it was initially
entered by the user.

Points to a parameter list of successive doublewords. The first entry
in the list is the name of the called routine or program, and any
successive doublewords may contain arguments passed to the
program. Parameter lists are discussed under "Parameter Lists."

Contains the address of a 24-fullword save area, which you can use
to save your caller's registers. This save area is provided to satisfy
standard OS and DOS linkage conventions; you do not need to use
it in CMS, since the SVC routines save the registers.

Contains the return address of the SVC handling routines. You
must return control to this address when you exit from your
program.

The CMS routines that get control by way of register 14 close files,
update your disk file directory, and calculate and type the time used
in program execution. These values appear in the CMS ready
message, which is displayed at your terminal when your program
finishes execution:

R;T=n.nn/x.xx hh:rom:55

where:

n.nn is the CMS CPU time (in seconds)
x.xx is the combined CP and CMS CPU time.
hh: rom: 55 is the time of day in hours, minutes, and seconds.

Note: If CMS cannot calculate a valid time, it will display *. ** in
place of n.nn/ x.xx.

If the CMS CPU time or the combined CP and CMS CPU time
exceeds 35 minutes, the printed time may be incorrect.

Chapter 8. Programming for The CMS Environment 8-1

Return Code Handling

Parameter Lists

8-2 VM/SPCMS User's Guide

12 and 15 Contain your program's entry point address. You can use this
address to establish immediate addressability in your program. You
should not use Register 15 as a base address, since all CMS SVCs
use it for communication with your programs.

Figure 8-1 on page 8-3 shows a sample CMS assembler language program entry
and exit.

Register 15, in addition to its role in entry linkage, is also used in CMS as a return
code register. All of the CMS internal routines pass a completion code by way of
register 15, and the SVC routines that receive control when any program completes
execution examine register 15.

If register 15 contains a nonzero value, this value is placed in the CMS ready
message, following the "R":

R(nnnnn) ;T=n.nn/x.xx hh:mm:ss

When you are executing programs in CMS, it is good practice, if your programs do
not use register 15 as a return code register, to place a zero in it before transferring
control back to CMS. Otherwise, the ready message may display meaningless data.

When you enter a command at your terminal, a CMS scan routine sets up two
distinct parameter lists based on your command input line.

The first type of parameter list created is known as a tokenized parameter list. It is
doubleword aligned, with parameters occupying successive doublewords. The scan
routine recognizes blanks and parentheses as argument delimiters; parentheses are
placed, in the. parameter list, in separate doublewords. If you enter an argument
longer than eight characters, the argument is truncated and only the first eight
characters of the argument will appear in the parameter list. However, no error
condition results. General purpose register 1 (R 1) contains the address of this
parameter list.

The second type of parameter list that is created is known as an extended
(untokenized) parameter list. It consists of four addresses that indicate the
extended form of the command as it was entered at the terminal. The first
non-blank character, left parenthesis, or right parenthesis following the command is
treated as a delimiter to determine where the pointer to the start of the argument is.
General purpose register 0 (RO) contains the address of this parameter list.

For example, if you have a CMS MODULE file named TESTPROG, and you call
it from the command line as follows:

testprog(file2)

The scan routine sets up the following tokenized parameter list

CMNDLIST DS
DC
DC
DC
DC
DC

OD
CL8'TESTPROG'
CL8' ('
CL8'FILE2'
CL8') ,
8X'FF'

PROGRAM CSECT
USING PROGRAM, 12 ESTABLISH ADDRESSABILITY
ST 14,SAVRET SAVE RETURN ADDRESS IN R14

L 14,SAVRET LOAD RETURN ADDRESS
LA 15,0 SET RETURN CODE IN R15
BR 14 GO

SAVRET DS F SAVE AREA

Figure 8-1. Sample CMS Assemltler Pr Eatry aatl Exit LiDkaae

The last doubleword consists of all X'F's. This acts as delimiter to indicate the end
of the parameter list.

The scan routine also sets up the following extended parameter list:

EPLIST DC
DC
DC
DC

A (CMDSTART)
A (ARGSTART)
A (ARGEND)
A(O)

The extended parameter list refers to the same command line in the following way:

CMDSTART DC
ARGSTART DC
ARGEND EQU

C'testprog'
C' (file2) ,

*
The left parenthesis following 'testprog' is the delimiter to determine ARGSTART.
The following is another example of how the extended parameter list is set up. If
you called TESTPROG from the command line:

testprog file2

The scan routine sets up the tokenized parameter list:

CMNDLIST DS
DC
DC
DC

OD
CLS'TESTPROG'
CLS'FILE2'
SX'FF'

The extended parameter list is set up the following way:

CMDSTART DC C'testprog
ARGSTART DC C'file2'
ARGEND EQU *

The first non-blank character following 'testprog' is the delimiter that determines
ARGSTART.

If you do not specify any arguments and have called TESTPROG from the
command line as follows:

testprog

The scan routine sets up the tokenized parameter list:

Chapter S. Programming for The CMS Environment 8-3

I Using Parameter Lists

CMNDLIST DS
DC
DC

OD
CL8'TESTPROG'
8X'FF'

The extended parameter list will be:

CMDSTART DC
AR(;START DC
ARGEND EQU

C'testprog'

*
*

When there are no arguments, ARGST ART is set equal to ARGEND.

The scan routine that sets up the parameter lists places the address of the lists in
RO and Rl, as previously specified, and then calls the SVC handling routine. The
SVC routine gives control to the program named in the first doubleword of the
tokenized parameter list.

When your program receives control, it can examine the parameter list passed to it
by way of either RO or R l, or both.

You can use this technique, also, to call CMS commands from your programs.

When you use the LOAD and RUN commands to execute a program in CMS, you
can pass an argument list to the program on the command line. For example, if you
enter:

loadmyprog
start * run1 proga

the "*,, indicates that the entry point is to be defaulted. The arguments RUNl and
PROGA are placed in a parameter list of doublewords and register 1 contains the
address of this list when your program receives control. If you want to use the
RUN command to perform the load and start fun~~!QJ!S,".Y..Q\L~Ould enter: .-.. ~,~ .. ,.-'.~".,"

run myprog (run1 proga f';'r' ,,_,,'\' i !: I,. "'~, ',s --;:',\,\ _ C,._ '-

The parenthesis indicates the beginning of the argument list.

To detect the absence of a parameter list that occurs when the LOAD command
START option is used, your program may test the doubleword pointed to by
register 1 for a delimiter made up of l's in all of the bit positions.

Calling a CMS Command from a Program

8-4 VM/SP eMS User's Guide

I You can call a CMS command from an assembler language program by setting up
Rl to point to a tokenized parameter list and then issuing an SVC 202. For
example:

1'FUN'"~;i) DS
'----- DC

DC
DC
DC
DC
DC
DC

OD
CL8'PUNCH'
CL8'NAME'
CL8'TYPE'
CL8'*'
CL8' ('
CL8'NOH'
8X'FF'

Note: If you are using EXEC 2, refer to the VM / SP EXEC 2 Reference for
information on parameter lists for EXEC 2 applications.

If your program is executing in the user area, you must be careful not to call any
CMS command which also runs in the user area. The CMS commands that execute
in the user area are identified in a table under "CMS Command Execution
Characteristics" on page 3-19. Refer also to "Executing Program Modules" on
page 8-7 for further considerations.

In your program, when you want to execute this command, you should load the
address of the list into register 1, and issue the supervisor call instruction (SVC) as
follows:

LA ..1{RUNCHER,:)
i SVC 202, .'
'. DC AL~ (ERROR)

When you issue an SVC 202, you must supply an error return address in the four
bytes immediately after the SVC instruction. If the return code (register 15)
contains a nonzero value after returning from the SV C call, control passes to the
address specified unless the address is equal to 1. If the address is 1, return is made
to the next instruction after the "DC AL4(1)" instruction. In the above example,
control would go to the instruction at the label ERROR.

If you want to ignore errors, you can use the sequence:

If you do not specify an error address, control is returned to the next instruction
after a normal return, but if there was an error executing the CMS command, your
program terminates execution.

If you want to execute a CP command or an EXEC procedure from a program, you
must use the CP and EXEC commands; for example:

SPOOL

EXEC

DS
DC
DC
DC
DC
DC
DC
DC
DC
DC

OD ;;
CL8'CP' K
CL8'SPOOL'
CL8'PRINTER'
CL8 'CLASS ,
CL8'S'
8X'FF'
CL8'EXEC' ~
CL8'PFSET'
8X'FF'

It is not possible to enter a parameter that is longer than eight characters this way.

As an alternative, you can use the CMS LINEDIT macro to call a CP command
from a program. Specify DISP=CPCOMM on the macro instruction; for example:

LINEDIT TEXT='SPOOL E CLASS S',DISP=CPCOMM,DOT=NO

On return from the execution of the LINEDIT macro instruction, register 15
contains the return code from the CP command. The LINEDIT macro is described
in VM/SP CMS Command and Macro Reference.

Another way to execute a CP command from a program is to use the DIAGNOSE
x'08' instruction. For additional information on this, see the VM / SP System -
Programmer's Guide.

Chapter 8. Programming for The CMS Environment 8-5

Creating Immediate commands

8-6 VM/SP eMS User's Guide

In addition to the CMS built-in Immediate commands, CMS provides facilities for
you to create your own Immeoiate commands. Rules for creating your own
Immediate commands are as follows:

1. Immediate commands can be created in three ways:

a. Immediate commands can be creating from Assembler Language programs
by issuing the IMMCMD macro. This macro associates a user-defined
Immediate command name with the address of a user-supplied exit routine
that receives control when the Immediate command is issued. Established
Immediate commands can also be explicitly cancelled by the IMMCMD
macro. If not explicitly cancelled,· all Immediate commands created by the
IMMCMD macro are automatically cancelled either upon return to the
CMS command environment (if not in CMS SUBSET mode) or by entry to
CMS abend.

b. Immediate commands can be created from EXECs by use of the
IMMCMD command. This command establishes and cancels Immediate
commands and determines the status of the Immediate command. All
Immediate commands not explicitly cancelled by the IMMCMD command
are automatically cancelled either upon return to the CMS command
environment (if not in CMS SUBSET mode) or by entry to CMS abend.
User exit routines cannot be used with Immediate commands established
by the IMMCMD command.

c.. Immediate commands can be created by using the immediate attribute that
is supported by the NUCEXT function and the NUCXLOAD command.
When a nucleus extension is declared with the immediate attribute, that
nucleus extension is established as an Immediate command. By allowing
nucleus extensions to be declared as Immediate commands, the following
additional flexibility is provided:

1) Immediate command routines can be created in free storage.

2) Immediate commands can be permanently established for the duration
of a CMS IPL (that is, they are not cleared during CMS
end-of -command processing).

3) Immediate commands can be invoked as exits during abend (SERVICE
attribute) and end-of-command (ENDCMD attribute) processing.

4) Immediate commands can be established to survive CMS abend
(SYSTEM attribute).

Nucleus extensions established as Immediate commands can be invoked
as Immediate commands or as part of normal SVC 202 processing.
When a nucleus extension is called as an Immediate command, the
high-order byte of register 1 is set to X'06'.

The immediate attribute is supported by the NUCEXT function
(DECLARE, QUERY, CANCEL) and by the NUCXLOAD,
NUCXDROP, and NUCXMAP commands.

Executing Program Modules

2. Immediate commands can be 1 to 8 characters in length. Synonyms can be set
up for Immediate commands just like they can be for regular CMS commands.
Immediate commands or their synonyms must begin with a non-blank
character.

3. Immediate commands are delimited by a blank. Any data following the blank
is passed to the Immediate command routine as parameters. The capability to
pass parameters is not applicable to Immediate commands declared by the
IMMCMD command. Immediate commands and their parameters are subject
to translation just as regular CMS commands are.

4. Immediate commands can be set up to override built-in CMS Immediate
commands (for example, HX). However, built-in CMS commands cannot be
cleared.

5. Immediate commands with the same name can override each other in a
stack-like manner, with the most recent one declared being the one in effect.

6. The logical line end character is ignored on Immediate command input lines.

7. Both the IMMCMD macro, the NUCEXT function, and the NUCXLOAD
command provide the capability to give control to an "exit" routine whenever a
specific Immediate command is invoked. These exit routines receive control as
an extension of eMS I/O interrupt handing. Therefore, they receive control
with a PSW key of 0 and are disabled for interrupts. The exit routine must not
perform any I/O operations or issue any SVCs that result in I/O operations.
In addition, the exit routine must not enable itself for interrupts. DIAGNOSE
instructions can be used within the exit, but the exit routine must not enable
itself for interruptions that may be caused by the DIAGNOSE (for example,
DIAGNOSE X'58').

8. Terminal users may optionally require that all Immediate commands be
prefixed with an escape character. Use the SET IMESCAPE command to set
the escape character. The status of lMESCAPE function can be determined
by the QUERY command. For more details, see the VMISP CMS Command
and Macro Reference.

MODULE files, in CMS, are nonrelocatable programs. Using the GENMOD
command, you can create a module from any program that uses OS or CMS
macros. When you create a module~ it is generated at the virtual storage address at
which it is loaded, for example:

load myprog
genmod test it

The CMS disk file, TESTIT MODULE A, that is created as a result of this
GENMOD command, always begins execution at location X'20000', the beginning
of the user program area.

If you want to call your own or CMS program modules using SVC 202 instructions,
you must be careful not to execute a module that uses the same area of storage that
your program occupies. If you want to call a module that executes at location
X'20000', you can load the calling program at a higher location; for example:

load myprog (origin 30000

Chapter 8. Programming for The CMS Environment 8-7

The Transient Program Areo

8-8YM/SP eMS User's Guide

As long as the MODULE file called by MYPROG is no longer than X'10000'
bytes, it will not overlay your program. Alternatively, either the calling or the
called MODULE may be loaded as a nucleus extension. Refer to the CMS
NUCXLOAD command in the VM / SP CMS Command and Macro Reference for
more information on nucleus extensions.

Note: Many CMS disk-resident command modules execute in the user
program area. This means that if you call a CMS command that runs in the
user program area, you must be certain that it will not overlay your own
program. Some CMS command modules issue the STRINIT macro or were
created using the STR option of the GENMOD command.

Both cause the user area storage pointers to be reset. The reset condition may
cause errors upon return to the original program (for example, when OS
GETMAIN/PREEMAIN macros are issued in the user program).

The CMS commands that execute in the user program area or that reset the user
area storage pointers are identified in table under the heading "CMS Command
Execution Characteristics" page 3-19.

~---.--"

To avoid overlaying programs executing in the user program area, you can generate
program modules to run in the CMS transient area, which is a two-page area of
storage that is reserved for the execution of programs that are called for execution
frequently. Many CMS·commands run in this area, which is located at X'EOOO'.
Programs that execute in this area run disabled.

To generate a module to run in the transient area, use the ORIGIN TRANS option
when you load the TEXT file into storage, then issue the GENMOD command:

load myprog (origin trans
genmod setup (str

Note: If a program running in the user area calls a transient routine in
which a module was generated using the GENMOD command with the
STR option, the user area storage pointers will be reset. This reset
condition could cause errors upon return to the original program (for
example, when OS GETMAIN /PREEMAIN macros are issued in the user
program).

The two restrictions placed on command modules executing in the transient area
are:

1. They may have a maximum size of 8192 bytes, since that is the size of the
transient area. This size includes any free storage acquired by GETMAIN
macros.

2. They must be serially reusable. When a program is called by an SVC 202, if it
has already been loaded into the transient area, it is not reloaded.

The CMS commands that execute in the transient area are identified in a table
under the heading "CMS Command Execution Characteristics" on page 3-19.

eMS Macro Instructions

There are a number of assembler language macros distributed with the CMS system
that you can use when you are writing programs to execute in the CMS
environment. These macros are in the macro libraries CMSLm MACLIB and
DMSSP MACLIB, which are normally located on the system disk.

• CMSLIB MACLIB contains macros from VM/370
• DMSSP MACLIB contains macros that are new or changed in VM/SP.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP should
precede CMSLm in the search order.

There are macros to manipulate CMS disk files, to handle terminal
communications, to manipulate unit record and tape input/output, and to trap
interruptions. These macros are discussed in general terms here; for complete
format descriptions, see the VM/SP CMS Command and Macro Reference.

Macros for Disk File Manipulation

Label

FSCBCOMM DC CL8' ,
FSCBFN DC CL~'

,
FSCBFT DC CL8' ,
FSCBFM DC CL2' ,
FSCBITNO DC H'O'
FSCBBUFF DC A'D'
FSCBSIZE DC F'O'
FSCBFV DC CL2'F'

Figure 8 .. 2 (Part 1 of 2). FSCB Format

Disk files are described in CMS by means of a file system control block (FSCB).
The CMS macro instructions that manipulate disk files use FSCBs to identify and
describe the files. When you want to manipulate a CMS file, you can refer to the
file either by its file identifier, specifying 'filename filetype filemode' in quotation
marks, or you can refer to the FSCB for the file, specifying FSCB=fscb, where
fscb is the label on an FSCB macro.

To establish an FSCB for a file, you can use the FSCB macro instruction specifying
a file identifier; for example:

INFILE FSCB 'INPUT TEST A1'

You can also provide, on the FSCB macro instruction, descriptive information to
be used by the input and output macros. If you do not code an FSCB macro
instruction for a file, an FSCB is created in-line (following the macro instruction)
when you code an FSREAD, FSWRITE, or FSOPEN macro instruction.

The format of an FSCB is listed in Figure 8-2, followed by a description of each of
the fields.

Description

File system command
Filename
Filetype
Filemode
Relative record number (RECNO)
Address of buffer (BUFFER)
Number of bytes to read or write (BSIZE)
Record format - F or V (RECFM)

Chapter 8. Programming for The eMS Environment 8.;.9

Label

FSCBFLG EQU FSCBFV+1
FSCBNOIT DC H'1 '
FSCBNORD DC AL4(O)
FSCBAITN DC AL4(O)
FSCBANIT DC AL4 (1)

FSCBWPTR DC AL4(O)
FSCBRPTR DC AL4(O)

Figure 8-2 (Part 2 of 2). FSCB Format

8-10 VM/SP eMS User's Guide

Description

Flag byte
Number of records to read or write (NOREC)
Number of bytes actually read
Extended FSCB relative record number
Extended FSCB relative number of records
Extended FSCB relative write pointer
Extended FSCB relative read pointer

The fields FSCBAITN, FSCBANIT, FSCBWPTR, and FSCBRPTR are only
generated in the FSCB when the extended format FSCB is requested (FORM=E is
coded on the FSCB macro instruction). In this case, the fields FSCBITNO and
FSCBNOIT are reserved fields. Extended format FSCBs must be used to
manipulate files larger than 65,533 items. The labels shown above are not
generated by the FSCB macro; to reference fields within the FSCB by these labels,
you must use the FSCBD macro instruction to generate a DSECT.

FSCBCOMM: When the FSCBFN, FSCBFT, and FSCBFM fields are filled in,
you can fill in the FSCBCOMM field with the name of a CMS command and use
the FSCB as a parameter list for an SVC 202 instruction. (You must place a
delimiter to mark the end of the command line.)

FSCBFN, FSCBFl', FSCBFM: The filename, filetype and filemode fields identify
the CMS file to be read or written. You can code the fileid on a macro line in the
format 'filename filetype filemode' or you can use register notation. If you use
register notation, the register that you specify must pomt to an 18-byte field in the
format:

FILEID DC
DC
DC

CL.8'filename'
CL8'filetype'
CL2'fm'

The fileid must be specified either in the FSCB for a file or on the FSREAD,
FSWRITE, FSOPEN, or FSERASE macro instruction you use that references the
file.

FSCBITNO: For an FSCB without the FORM=E option, the record or item
number indicates the relative record number of the next record to be read or
written; it can be changed with the RECNO option. The default value for this field
is O. When you are reading files, a 0 indicates that records are to be read
sequentially, beginning with the first record in the file. When you are writing files,
a 0 indicates that records are to be written sequentially, beginning at the first
record following the end of the file, if the file already exists, or with record I, if it is
a new file.

For an FSCB·generated with the FORM=E option, the FSCBAITN field contains
the record or item number. The FSCBITNO field is reserved.

Whenever you read discontiguous· files in CMS (that is, files with missing records),
the input buffer will be filled with. the appropriate number of bytes. Be aware that
the flag byte in the FSCB may not reflect whether the input buffer contains
generaied data items from RDBUF.

Using the FSCB

FSCBBUFF: The buffer address, specified in the BUFFER option, indicates the
label of the buffer from which the record is to be written or into which the record is
to be read. You should always supply a buffer large enough to accommodate the
longest record you expect to read or write. This field must be specified, either in
the FSCB, or on the FSREAD or FSWRITE macro instruction.

FSCBSIZE: This field indicates the number of bytes that are read or written with
each read or write operation. The default value is O. If the buffer that you use
represents the full length of the records you are going to be reading or writing, you
can use the BSIZE option to set this field equal to your buffer length; when you are
writing variable-length records, use the BSIZE operand to indicate the length of
each record you write. This field must be specified.

FSCBFY: This two-character field indicates the record format (RECFM) of the
file. The default value is F (fixed).

FSCBFLG The flag byte is X'20' indicating an extended FSCB generated when the
FORM=E option is coded on the FSCB macro instruction.

FSCBNOIT: For an FSCB without the FORM=E option, this field contains the
number of whole records that are to be read or written in each read or write
operation. You can use the NOREC option ~ith the BSIZE option to block and
deblock records.

For an FSCB generated with the FORM=E option, the FSCBANIT field contains
the number of whole records to be read or written. The FSCBNOIT field is
reserved.

FSCBNORD Following a read operation, this field contains the number of bytes
that were actually read, so that if you are reading a variable-length file, you can
determine the size of the last record read. The FSREAD macro instruction places
the information from this field into register O.

FSCBAITN: The alternate record or item number indicates the relative record
number of the next record to be read or written in an extended FSCB format. See
the description of the FSCBITNO field for the usage of this field.

FSCBANIT: This field contains the alternate number of whole records in an
extended FSCB format. See the description of the FSCBNOIT field for the usage
of this field.

FSCBWPTR: The FSPOINT macro instruction uses this field to contain the
alternate write pointer for an extended FSCB during a POINT operation.

FSCBRPTR: The FSPOINT macro instruction uses this field to contain the
alternate read pointer for an extended FSCB during a POINT operation.

The following example shows how you might code an FSCB macro instruction to
define various file and buffer characteristics, and then use the same FSCB to refer
to different files:

Chapter 8. Programming for The CMS Environment 8-11

COMMON
SHARE

FSREAD 'INPUT FILE A1',FSCB=COMMON,FORM=E
FSWRITE 'OUTPUT FILE A1',FSCB=COMMON,FORM=E

FSCB BUFFER=SHARE,RECFM=V,BSIZE=200,FORM=E
DS CL200

In the above example, the fileid specifications on the FSREAD and FSWRITE
macro instructions modify the FSCB.at the label COMMON each time a read or
write operation is performed. You can also modify an FSCB directly by referring
to fields by a displacement off the beginning of the FSCB; for example:

MVC FSCB+8,=CL8'NEWNAME'

moves the name NEWNAME into the filename field of the FSCB at the label
FSCBFN.

As an alternative, you can use the FSCBD macro instruction to generate a DSECT
and refer to the labels in the DSECT to modify the FSCB; for example:

LA R5,INFSCB
USING FSCBD,R5

MVC FSCBFN,NEWNAME

INFSCB FSCB 'INPUT TEST A1',FORM=E
NEWNAME DC CL8'OUTPUT'

FSCBD

In the above example, the MVC instruction places the filename OUTPUT into the
FSCBFN (filename) field of the FSCB. The next time this FSCB is referenced, the
file OUTPUT TEST is the file that is manipulated.

Reading and Writing eMS Disk FUes

8-12 VM/SP eMS User's Guide

CMS disk files are sequential files; when you use CMS macros to read and write
these files, you can access them sequentially with the FSREAD and FSWRITE
macros. However, you may also refer to records in a CMS file by their relative
record numbers, so you can, in effect, access records using a direct access method.

If you know which record you want to read or write, you can specify the RECNO
option on the FSCB macro instruction, or on the FSOPEN, FSREAD, or
FSWRITE macro instructions. When you use the RECNO option on the FSCB
macro instruction, you must specify it as a self-defining term; for the FSOPEN,
FSREAD, or FSWRITE macro instructions, you may specify either a self-defining
term, as:

WRITE FSWRITE FSCB=WFSCB,RECNO=10,FORM=E

or using register notation, as follows:

WRITE FSWRITE FSCB=WFSCB,RECNO=(5),FORM=E

where register 5 contains the record number of the record to be read.

When you want to access files sequentially, the FSCBITNO field of the FSCB must
be 0 for an FSCB without the FORM=E option; for an extended FSCB, the
FSCBAITN field must be O. This is the default value. When you are reading files

With the FSREAD macro instruction, reading begins with record number 1. When
you are writing records to an existing file with the FSWRITE macro, writing begins
following the last record in the file.

To begin reading or writing files sequentially beginning at a specific record number,
you must specify the RECNO option twice: once to specify the relative record
number at which you want to begin reading, and a second time to specify
RECNO=O so that reading or writing will continue sequentially beginning after
the record just read or written. You can specify the RECNO option on the
FSREAD or FSWRITE macro instruction, or you may change the FSCBITNO or
FSCBAITN field in the FSCB for the file, as necessary for the FSCB form.

For example, to read the first record and then the 50th record of a file, you could
code the following:

READ 1

READ 5 0

RFSCB
WFSCB
COMMON

FSREAD FSCB=RFSCB,FORM=E
FSWRITE FSCB=WFSCB,FORM=E
LA 5,RFSCB
USING FSCBD,5
MVC FSCBAITN,=F'50'
FSREAD FSCB=RFSCB,FORM=E
FSWRITE FSCB=WFSCB,FORM=E

FSCB 'INPUT FILE A1 ',BUFFER=COMMON,BSIZE=120,FORM=E
FSCB 'OUTPUT FILE A1',BUFFER=COMMON,BSIZE=120,FORM=E
DS CL120

FSCBD

In this example, the statements at the label READ 1 write record 1 from the file
INPUT FILE Al to the file OUTPUT FILE AI. Then, using the DSECT
generated by the FSCBD macro, the FSCBITNO field is changed because an
extended FSCB is being used

FSCBAITN field is changed because an extended FSCB is being used and record
50 is read from the input file and written into the output file.

The "update-in-place" facility allows you to write blocks back to their previous
location on disk. The "update-in-place" attribute of a CMS file is indicated by the
filemode number 6.

Reading and Writing Variable-length Records:

When you read or write variable-length records, you must specify RECFM= V
either in the FSCB for the file or on the FSWRITE or FSREAD macro instruction.
The read/write buffer should be large enough to accommodate the largest record
you are going to read or write.

To write variable-length records, use the BSIZE= option on the FSWRITE macro
instruction to indicate the record length for each record you write. When you read
variable-length records, register 0 contains, on return from FSREAD, the length of
the record read.

The following example shows how you could read and write a variable-length file:

Chapter 8. Programming for The CMS Environment 8-13

End-of -File Checking

Opening and Closing Files

8-14 VM/SP eMS User's Guide

READ FSREAD 'DATA CHECK A1',BUFFER=SHARE,BSIZE=130,ERROR=OUT,
FORM=E

FSWRITE 'COPY DATA A1 ',BUFFER=SHARE,BSIZE=(O) ,FORM=E
B READ

When you update files of variable-length records, the replacement record must be
the same length as the original record. An attempt to write a record shorter or
longer than the original record results in truncation of the file at the specified
record number. No error return code is given.

You can specify the ERROR= operand with the FSREAD or FSWRITE macro
instruction, so that an error handling routine receives control in case of an error. In
CMS, when an end of file occurs during a read request, it is treated as an error
condition. The return code is always 12. If you specify an error handling routine
on the FSREAD macro instruction, then the first thing this routine can do is check
for a 12 in register 15.

Your error handling routine may also check for other types of errors. See the
macro description in the VM / SP eMS Command and Macro Reference for details
on the possible errors and the associated return codes.

Usually, CMS opens a file whenever an FSREAD or FSWRITE macro instruction
is issued for the file. When control returns to CMS from a calling program, all files
accidentally left open are closed by CMS, so you do not have to close files at the
end of a program.

For a minidisk in 512-, lK-, 2K-, or 4K-byte block format, a file may be open for
concurrent read and write operations, and an FSCLOSE need not be issued when
switching from reading to writing, or vice versa. For example:

LA 3,2

READ FSREAD FSCB=UPDATE,RECNO=(3),ERROR=READERR,FORM=E

FSWRITE FSCB=UPDATE,RECNO=(3),ERROR=WRITERR,FORM=E
LA 3,1(3)
B READ

UPDATE FSCB 'UPDATE FILE A1',BUFFER=BUF1,BSIZE=80,FORM=E

When you are running long running applications or running disconnected, include
several FSCLOSE macros to each file referenced. This insures that changes to the
file are reflected on the disk in the event that the user is forced off the system.
This consideration is important when running on 512-, lK-, 2K-, or 4K-byte block
disks since the disk directory is not updated until all of the files on the disk are
closed.

If you want to read and write records from the same file on an 800-byte block
format minidisk, youmust issue an FSCLOSE macro instruction to close the file
whenever you switch from reading to writing. For example:

Creating New FUes:

LA. 3,2
READ FSREAD FSCB=UPDATE ,·RECNO= (3) , ERROR=READERR

FSCLOSE FSCB=UPDATE

UPDATE

FSWRITE FSCB=UPDATE,RECNO=(3) ,ERROR=WRITERR
FSCLOSE FSCB=UPDATE
LA 3,1(3)
B READ

FSCB 'UPDATE FILE A1',BUFFER=BUF1,BSIZE=80

To execute a loop to read, update, and rewrite records, you must read a record,
close the file,write a record, close the file, and so on. Since closing a file
repositions the read pointer to the beginning of the file and the write pointer at the
end of the file, you must specify the relative record number (RECNO) for each
read and write operation. In the above example, register 3 is used to contain the
relative record number. It is initialized to begin reading with the second record in
the file and is increased by one following each write operation.

When you use an EXEC to execute a program to read or write a file, the file is not
closed by CMS until the EXEC completes execution. Therefore, if you read or
write the same file more than once during the EXEC procedure, you must use an
FSCLOSE macro instruction to close the file after using it in each program, or use
the FSOPEN macro instruction to open it before each use. Otherwise, the read or
write pointer is positioned as it was when the previous program completed
execution.

When you want to begin writing a new file using CMS data management macros,
there are two ways to ensure that the file you want to create does not already exist.
One way is to issue the.FSSTATE macro instruction to verify the existence of the
file.

A second way to ensure that a file does not already exist is to issue an FSERASE
macro instruction to erase the file. If the file does not exist, register 15 returns
with a code of 28. If the file does exist, it is erased. See Figure 8-3 on page 8-16
for an illustration of a sample program using CMS data management macros.

Chapter 8. Programming for The eMS Environment 8-15

LINE SOURCE STATEMENT

BEGIN CSECT \:::::i:::::

PRINT NOGEN
USING *,12 ESTABLISH ADDRESSABILITY
LR 12,15
ST 14,SAVE
LA 2,8(,1) R2=ADDR OF INPUT FILEID IN PLIST $1
LA 3,32(,1) R3=ADDR OF OUTPUT FILEID IN PLIST

* DETERMINE IF INPUT FILE EXISTS
FSSTATE (2) ,ERROR=ERR1,FORM=E

* * READ A RECORD FROM INPUT FILE AND WRITE ON OUTPUT FILE
RD FSREAD (2),ERROR=EOF,BUFFER=BUFF1,BSIZE=80,FORM=E ~~1

FSWRITE (3) ,ERROR=ERR2,BUFFER=BUFF1,BSIZE=80,FORM=E
B RD LOOP BACK FOR NEXT RECORD

* * COME HERE IF ERROR READING INPUT FILE
EOF C 15, =F' 12' END OF FILE? :\:\\i\\(

BNE ERR3 ERROR IF NOT
LA 15,0 ALL O.K. - ZERO OUT R15
B EXIT GO EXIT

* IF INPUT FILE DOES NOT EXIST
ERR1 WRTERM 'FILE NOT FOUND',EDIT=YES

B EXIT

* * IF ERROR WRITING FILE
ERR2 LR 1 0 , 1 5 SAVE RET CODE IN REG 1 0 :::::\!::\:

LINEDIT TEXT='ERROR CODE IN WRITING FILE',SUB=(DEC,(10»
B EXIT

* * IF READING ERROR WAS NOT NORMAL END OF FILE
ERR3 LR 10,15 SAVE RET CODE IN REG 10 B~

LINEDIT TEXT='ERROR CODE IN READING FILE' ,SUB=(DEC, (10»
*
EXIT L 14,SAVE LOAD RETURN ADDRESS

BR 14 RETURN TO CALLER
*
BUFF 1 DS CL80
SAVE DS F

END

Notes:
The program might be invoked with a parameter list in the format
progname INPUT FILE A1 OUTPUT FILE A1. This line is placed in a
parameter list by CMS routines and addressed by register 1
(see note 2).

tlI: The parameter list is a series of doublewords, each containing
one of the words entered on the command line. Thus, 8 bytes
past register 1 is the beginning of the input fileid; 24 bytes
beyond that is the beginning of the second fileid.

::\\I:::\The FSREAD and FSWRITE macros cause the files to be opened; no
open macro is necessary. CMS routines close all open files when
a program completes execution (except CMS EXEC files).

\\\1,\\\: The return code in register 15 is tested for the value 12,
which indicates an end-of-file condition. If it is the end of
the file, the program exits; otherwise, it writes an error
message.

:~::!t The dots in the LINEDIT macro are substituted, during execution,
with the decimal value in register 10.

Figure 8-3. A Sample Listing of a Program that Uses eMS Macros

8-16 VM/SP eMS User's Guide

CMS Macros for Terminal Communications

There are four CMS macros you can use to write interactive, terminal-oriented
programs. They are RDTERM, WRTERM, LINEDIT, and WAITT. RDTERM
and WRTERM only require a read/write buffer for sending and receiving lines
from the terminal. The third, LINEDIT, has a substitution and translation
capability.

When you use the WRTERM macro to write a line to your terminal you can specify
the actual text line in the macro instruction, for example:

DISPLAY WRTERM 'GOOD MORNING'

You can also specify the message text by referring to a buffer that contains the
message.

The RDTERM macro accepts a line from the terminal and reads it into a buffer
you specify. You could use the RDTERM and WRTERM macros together, as
follows:

WRITE
READ

REWRITE

BUFFER

WRTERM 'ENTER LINE'
RDTERM BUFFER
LR 3,0
WRTERM BUFFER, (3)

OS CL130

In this example, the WR TERM macro results in a prompting message. Then the
RDTERM macro accepts a line from the terminal and places it in the buffer
BUFFER. The length of the line read, contained in register 0 on return from the
RDTERM macro, is saved in register 3. When you specify a buffer address on the
WRTERM macro instruction, you must specify the length of the line to be written.
Here, register notation is used to indicate that the length is contained in register 3.

The LINEDIT macro converts decimal and hexadecimal data into EBCDIC, and
places the converted value into a specified field in an output line. There are list and
execute forms of the macro instruction, which you can use in writing reentrant
code. Another option allows you to write lines to the offline printer. The
LINEDIT macro is described, with examples, in VM / SP CMS Command and
Macro Reference. Figure 8-3 on page 8-16 shows how you might use the LINEDIT
macro to convert and display CMS return codes.

The WAITT (wait terminal) macro instruction can help you to synchronize input
and output to the terminal. If you are executing a program that reads and writes to
the terminal frequently, you may want to issue a WAITT macro instruction to halt
execution of the program until all terminal I/O has completed.

CMS Macros for Unit Record and Tape 110

CMS provides macros to simplify reading and punching cards (RDCARD and
PUNCHC), and creating printer files (PRINTL). When you use either the
PUNCHC or PRINTL macros to write or punch output files while a program is
executing, you should remember to issue a CLOSE command for your virtual
printer or punch when you are finished. You can do this either after your program
returns control to CMS, by entering:

Chapter 8. Programming for The CMS Environment 8-17

cp close e

or --

cp close, d

or, you can set up a parameter list with the cOIIl1l\and line CP CLOSE E or CP
CLOSE D and issue an SVC 202.

The tape control macros, RDTAPE, WRTAPE and TAPECTL, can read and write
CMS files from tape, or control the positioning of a tape.

Interruption Handling Macros '

You can set up routines in your programs to handle interruptions caused by 1/0
devices, by SVCs, or by external interruptions using the HNDINT, HNDSVC, or
HNDEXT macro instructions.

With the HNDINT macro instruction, you can specify addresses that are to receive
control when an interruption occurs for a specified device. If the WAIT option is
used for a device specified in the HNDINT macro instruction, then the interruption
handling routine specified for the device does not receive control until after the
W AITD macro instruction is issued for the device.

You can use the HNDSVC macro instruction to trap supervisor call instructions of
particular numbers, if, for example, you want to perform some additional function
before passing control or you do not want any SVCs of the specified number to be
executed.

The CP EXTERNAL command simulates external interr11ptions in your virtual
machine; if you want to be able to pass control to a particular internal routine in
the event of an external interruption, you can use the HNDEXT macro instruction.

Updating Source Programs Using eMS

8-18 VM/SP eMS User's Guide

As you test and modify programs, you may want to keep backup copies of the
source programs. Then you can always return to a certain level of a program in
case you have an error. CMS provides several approaches to the probl~m of
program backup: the method you choose depends on the complexity of your
project, the changes you want to make, and the size of your programs.

The simplest method is to make a copy of the current source file under a new
name. You can do this using either the COPYFILE command or the editor. If you
use the COPYFILE command, your command line might be:

copyfile account assemble a oldacct assemble a

Then, you can use the editor to modify ACCOUNT ASSEMBLE; the file
OLDACCT ASSEMBLE contains your original source file.

You can make a copy of your source file using the editor directly. For example, if
you issue:

xedit account assemble
set fname newacct

The UPDATE Philosophy

Update Files

then any subsequent changes you make to the file ACCOUNT ASSEMBLE are
written into the file NEW ACCT ASSEMBLE. When you issue a FILE or SA VE
subcommand, your source file remains intact.

After your changes to the source program have been tested, you can replace the
source file with your new copy.

While the procedures outlined above for modifying programs are suitable for many
applications, they may not be adequate in a situation where several programmers
are applying changes to the same source code. These procedures also have the
drawback of not providing you with a record of what has been changed. After
using the editor, you do not have a record of the lines that have been deleted,
added, replaced, and so on, unless you manually add comments to the code, insert
special characters in the serialization column, or use some technique that records
program activity.

The UPDATE command and the XEDIT UPDATE option provide a way for you
to modify a source program without affecting the original. UPDATE produces an
update log, indicating the changes that have been made; both UPDATE and
XEDIT have the capability of combining multiple updates at one time, so that
changes made by different programmers or changes made at different times can be
combined into a single output file.

The UPDATE command and the XEDIT UPDATE option are the basic elements
of the entire VM/SP updating scheme and are used by system programmers who
maintain VM/SP at your installation. Although the input filetypes used by the
UPDATE command default to ASSEMBLE file characteristics, neither the
UPDATE command nor the XEDIT UPDATE option is limited to assembler
language programs, nor is it limited to system programming applications. You can
use it to modify and update any fixed-length, 80-character file that does not have
data in columns 73 through 80.

A simple update involves two input files:

• The source file, which is the program you want to update.

• An update file, usually created by XEDIT, containing control statements that
describe the changes you want to make.

The control statement file usually has a filetype of UPDATE. For convenience,
you can give it the same filename as your source file. For example, if you want to
update the file SAMPLE ASSEMBLE, you would create a file named SAMPLE
UPDATE using the XED IT UPDATE option. To apply the changes in the update
file, you issue the command:

update sample

The default values used by the UPDATE command are filetypes of ASSEMBLE
and UPDATE for the source and update files, respectively. If you are updating a
COBOL source program named READY COBOL with an update file named
UPDATE READY, you would issue the command:

update ready cobol a update ready a

Chapter 8. Programming for The eMS Environment 8-19

I Creating an Update FOe

After an UPDATE command completes processing, the input files are not changed;
two new files are created. One of them contains the updated source file, with a
filename that is the same as the original source file but preceded by a dollar sign
($). Another file, containing a record of updates is also created; it has a filename
that is the same as the source file and a filetype of UPDLOG. For example:

Source FOes

SAMPLE ASSEMBLE

SAMPLE UPDATE

READY COBOL

UPDATE READY

Output FOes

$SAMPLE ASSEMBLE

SAMPLE UPDLOG

$READY COBOL

READY UPDLOG

Now, you can assemble or compile the new source file created by the UPDATE
command.

An update file can be created easily using the XEDIT UPDATE option. Using
XEDIT, there is no need for the programmer to enter the control statements in the
UPDATE file. These are generated automatically by the editor. For example:

xedit ready cobol a (upd

specifies that a file called READY COBOL is to be edited and all updates to the
file are placed in a separate file called READY UPDATE along with the
appropriate control statements

The XEDIT UPDATE option expects source files to have sequence numbers in
columns 73 through 80. Before you can create an UPDATE file you must use the
XEDIT SERIAL subcommand to sequence your files. To generate these sequence
numbers, you should issue:

serial all

prior to issuing a FILE or SA VB subcommand when you are editing a file.
Alternately, you can preface sequence numbers with a three character identifier,
usually the first three characters of the fileneme. If you issue:

serial on

XEDIT will write sequence numbers in columns 76 through 80 of your file.
Columns 73 through 75 will contain the first three characters of the filename. If
SERIAL ON is specified, you must also specify the NOSEQ8 option on the XEDIT
command to tell the editor to expect a sequence of numbers only in columns 75
through 80. For example:

xedit ready cobol a (upd noseq8

Using XEDIT with an Existing Update FOe

8-20 VM/SP eMS User's Guide

If an update file already exists for a given source file and you wish to either (1) to
browse the source file with the updates applied or (2) to continue updating the
source file, you issue the same XEDIT command that you entered when you
created the update file. For example:

UPDATE Control Statements

xedit ready cobol a (upd

will apply all updates contained in READY UPDATE to the source file READY
COBOL and display the resulting file on the screen. Any updates created during
this editing session will be added to to those already contained in READY
UPDATE. Again, all control statements will automatically be generated by
XEDIT. More information about the XED IT UPDATE option can be found in the
VM/SP CMS Command and Macro Reference.

The control statements used by the UPDATE command are similar to those used
by the OS IEBUPDTE utility program or the DOS MAINT program UPDATE
function.

Each UPDATE statement must have the characters ./ in columns one and two,
followed by one or more blanks. The statements are described below, with
examples.

SEQUENCE Statement: This statement tells the UPDATE command that you
want to number or renumber the records in a file. Sequence numbers are written in
columns 73 through 80. For example, the statement:

0/ S 1000

indicates that you want sequence numbering to be done, in increments of 1000,
with the first statement numbered 1000. The SEQUENCE statement is convenient
if you want to apply updates to a file that does not already have sequence numbers.
In this case, you may want to use the REP (replace) option of the UPDATE
command, so that instead of creating a new file ($filename), the original source file
is replaced:

update sample (rep

INSERT Statement: This statement precedes new records that you want to add to
a source file. The INSERT statement tells the UPDATE command where to add
the new records. For example, the lines:

0/ I 1600
TEST2 TM HOLIDAY,X'02'

BNO VACATION
HOLIDAY?
NOPE 0 0 0 VACATION

result in the two lines of code being inserted into the output file following the
statement numbered 00001600. The inserted lines are flagged with asterisks in
columns 73 through 80. The INSERT statement also allows you to request that
new statements be sequenced; see "Sequencing Output Records."

DELETE Statement: This statement tells the UPDATE command which records
you want to delete from the source file. If your UPDATE file contains:

0/ D 2500

then only the record 00002500 is deleted. If the file contains

0/ D 2500 2800

then all the statements from 2500 through 2800 are deleted from the source file.

Chapter 8. Programming for The eMS Environment 8-21

Sequencing Output Records

8-22 VM/SP eMS User's Guide

REPLACE Statement: The REPLACE statement allows you to replace one or
more records in the source file. It precedes the new records you want to add. It is
a combination of the DELETE and INSERT statements. For example, the lines

./ R 38000 38500
PLIST DS OD

DC CL8'TYPE'
DC CL8"
DC CL8'FILE'
DC CL8' A1·'
DC 8X'FF'

replace existing statements numbered 38000 through 38500 with the new lines of
code. As with the INSERT statement, new lines are not automatically
resequenced.

COMMENT Statement: Use this statement when you want to place comments in
the update log file. For example, the line:

./ * Changes by John J. Programmer

is not processed by the UPDATE command when it creates the new source file, but
it is written into the update log file.

The UPDATE command expects source files to have sequence numbers in columns
73 through 80. If you use the SERIAL subcommand of the CMS editor to
sequence your files, the sequence numbers are usually written in columns 76
through 80; columns 73 through 75 contain a three-character identifier which is
usually the first three characters of the filename. If you want an eight-character
sequence number, you must use the subcommand: .

serial all

prior to issuing a FILE or SA VB subcommand when you are editing the file. Or,
you can create an UPDATE file with the single record:

./ S

and issue the UPDATE command to sequence the file.

If you use the UPDATE command with a file that has been sequenced using the
CMS editor's default values, you must use the NOSEQ8 option. Otherwise, the
UPDATE command cannot process your input file. The command:

update sample (noseq8

tells UPDATE to use only columns 76 through 80 when it looks for sequence
numbers. Figure 8-4 shows the four files involved in a simple update, and their
contents.

The Source File, SAMPLE ASSEMBLE

SAMPLE

NAME
AGE
SAVRET

CS'ECT
U~ING SAMPLE,R12
LR R12,R15
ST R14,SAVRET
LINEDIT TEXT='PLEASE ENTER YOUR NAME'
RDTEFM NAME
LINEDIT TEXT='PLEASE ENTER YOUR AGE'
RDTERM AGE
LINEDIT TEXT='HI, •••••••••• , YOU JUST TOLD ME YOU ARE

SUB=(CHARA,NAME,CHARA,AGE),RENT=NO
I. R14, SAVRET
BR R14
EJECT
DC CL 130' ,
DC CL 130' ,
DC F'O'
PEGEQU
END

00000100
00000200
00000300
00000400
OOOOO~OO
00000600
00000700
00000800

••••• ',x00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800 L-__ ___ , _____________________________________ ----J

The Update File, SAMPLE UPDATE
r---, ./ * REVISION BY DLC

./ R 500
LINEDIT TEXT='WHAT"S YOUR NAME?',DOT=NO

./ P 700 1000

5AM00010
5AM00020
5AM00030
5AM00040

LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNAME', x5AM00050
5AM00060
5AM00070
5AM00080
5AM00090
5AM00100
5AM00110
5AM00120
5AM00130
5AM00140
5AM00150
5AM00160
5AM00170
5AM00180
5A .. 00190
5AM00200
5AM00210
5AM00220
5AM00230
5AM00240

SUB= (CHARA, NAME)
RDTERM NAME
~VC DOCFN,NAME
LA 1,PLIST
SVC 202
'DC AL4 (ERROR)

RETURN EQU *
./ I 1200
ERROR EQU *

WRTERM 'FILE NOT FOUND'
B RETURN

./ D 1500

./ I 1600
PLIST DS OD

CLS'1YPF'
CLS' , DOCF~r

DC
DC
DC CLS'FILE'
nc CL A' A l'
DC SX'FF' ---------------___ ----J

Figure 8-4 (Part 1 of 2). Updating Source FOes with the UPDATE Command

Chapter 8. Programming for The GMS Environment 8-23

The Record of Updates Pile, SAMPLE UPDLOG

UPDATING 'SAMPLE ASSEMBLE A1'
.1 * REVISION BY DLC

WITH 'SAMPLE UPDATE A1' UPDATE LOG -- PAGE
...,
11

1
1

000005001
.1 R 500

DELETING •••
INSERTING •••

.1 R 700 1000
DELETING •••

INSERTING •••

RETURN
.1 I 1200

INSERTING... ERROR

.1 D 1500
DELETING... AGE

.1 I 1600
INSERTING... PLIST

DOCFN

LINEDIT TEXT='PLEASE ENTER YOUR NAME'
LINEDIT TEXT='WHAT"S YOUR NAME?',DOT=NO

LINEDIT TEXT='PLEASE ENTER YOUR AGE'
RDTERP.I AGE
LINEDIT TEXT='HI, •••••••••• , YOU JUST TOLD ME YOU

SUB=(CHARA,NAP.lE,CHARA,AGE),RENT=NO
LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNAP.lE',

SUB= (CHARA, NAME)
RDTERM NAME
MVC DOCFN,NAME
LA 1,PLIST
SVC 202
DC AL4 (ERROR)
EQU *
EQU *
WRTERM 'FILE NOT FOUND'
E RETURN

DC

DS
DC
DC
DC
DC
DC

CL130' ,

OD
CL8'TYPE'
CL8' •
CL8'PILE'
CL8'A1'
8X'FP'

The Updated Output File, $SAMPLE ASSEMBLE

SAMPLE

RETURN

ERROR

NAME
SAVRET
PLIST

DOCFN

CSECT
USING SAMPLE,R12
LR R12,R15
ST R14,SAVRET
LINEDIT TEXT='WHAT"S YOUR NAME?',DOT=NO
RDTERM NAME
LINEDIT TEXT='HI, •••••••••• , ENTER THE DOCNAME'.

SUB= (CHARA,NAME)
RDTERM NAME
MVC DOCFN,NAME
LA 1,PLIST
SVC 202
DC AL4 (ERROR)
EQU *
L R14,SAVRET
BR R14
EQU *
WRTERM 'FILE NOT FOUND'
B RETURN
EJECT
DC CL 130' ,
DC F'O'
DS OD
DC CL8'TYPE'
DC CL8"
DC CL8'FILE'
DC CL8' A l'
DC 8X'FP'
REGEQU
END

Figure 8-4 (Part 2 of 2). Updating Source FUes with the UPDATE Command

8-24 VM/SP eMS User's Guide

ARE

********1
J

000007001
000008001

••••• ·,x000009001
000010001

x********1
********1
********1
********1
********1
********1
********1
********1

1
********1
********1
********1

1
000015001

1
********1
********1
********1
********1
********1
********1

I

000001001
000002001
000003001
000004001
********1
000006001

x********1
********1
********1
********1
********1
********1
********1
********1
000011001
000012001
********1
********1
********1
000013001
000014001
000016001
********1
********1
********1
********1
********1
********1
000017001
000018001

Multiple Updates

The INSERT and REPLACE statements allow you to control the numbering
increment of records that you add to a source file. Notice, in Figure 8-4 on page
8-23 that inserted records have the character string '********' in columns 73
through 80. If you want sequence numbers on the inserted records, you must do
two things:

1. Use the INC option on the UPDATE command line. If you use the CTL
option, you do not have to specify the INC option. The CTL option is
described below, under "Multiple Updates."

2. Include a dollar sign ($) on the INSERT or REPLACE statement, optionally
followed by operands indicating how the records should be sequenced.

For example, to sequence the records added in Figure 8-4 on page 8-23 the control
statements would appear as:

./ R 500 $

./ R 700 1000 $

. / I 1200 $

. / I 1600 $

and you would issue the UPDATE command:

update sample (inc

The UPDATE command sequences inserted records by increments of 10. If you
want to control the numbering, for example, if you need to insert more than 10
statements between two existing statements, you can specify an alternate
sequencing scheme:

./ I 1800 $ 1805 5

Records introduced following this INSERT statement are numbered 00001805,
00001810,00001815, and so on. (If the NOSEQ8 option is in effect, then the
records would be XXX01805, XXX01810, and so on, where XXX is the
three-character identifier used in columns 73 through 75.)

If you have several UPDATE files to apply to the same source, you may apply
them in a series of UPDATE commands. For example, if you have updates named
FICA UPDTUPl, FICA UPDTUP2, and FICA UPDTUP3 to apply to the source
file FICA PLIOPT, you could do the following:

1. Update the source file with TEST1 UPDATE:

update fica pliopt a fica updtupl

2. Update the source file produced by the above command with the TEST2
UPDATE:

update $fica pliopt a fica updtup2

3. Update the new source file with TEST3:

update $$fica pliopt a fica updtup3

Chapter 8. Programming for The CMS Environment 8-25

The Control File

8-26 VM/SP eMS User's Guide

This final UPDATE command produces the file $$$FICA PLIOPT, which is now
the fully updated source file. This method.is cumbersome, however, particularly if
you have many updates to apply and they must be applied in a particular order.
Therefore, the UPDATE command provides a multilevel update scheme, which you
can use to apply many updates at one time, in a specified order.

To apply multilevel updates, you must have a control file, which by convention has
a file type of CNTRL and a filename that is the same as the source input file.
Therefore, to apply the three update files to FICA PLIOPT, you should create a
file named FICA CNTRL.

A control file is actually a list: it does not contain any actual update control
statements (INSERT, DELETE, and so on), but rather it indicates what update
files should be applied, and in what order. In the case of a multilevel update, all the
update files must have the same filename as the source file. Therefore, only the
filetypes need be specified in the control file to uniquely identify the update file. In
fact, if all your update files have filetypes beginning with the characters UPDT, you
need only specify the unique part of the filetype. The control file for FICA
PLIOPT, named FICA CNTRL, may typically look like the following:

TEXT MACS PLILIB
FICA3 UP3
FICA2 UP2
FICA1 UP1

The first record in the control file must be a MACS record. The second field in
this record must be "MACS" and it may be followed by up to eight macro library
names. Every record in the control file must have an "update level identifier"; in
this-example, the update level identifiers are TEXT on the MACS record, FICA1
for the UP1 record, and so on. The update level identifier may have a maximum of
five characters. See the "STK option" for more details about the "update level
identifier. "

The UPDATE command only uses the MACS record and the update level identifier
under special circumstances. These are described later, under "VMFASM EXEC
Procedure." For now, you only need to know that these things must be in a control
file in order for the UPDATE command to execute properly.

To update FICA PLIOPT, then, you would issue the UPDATE command as
follows:

update fica pliopt (ctl

When you use the CTL option, and you do not specify the name of a control file,
the UPDATE command looks for a control file with the filetype of CNTRL and a
filename that is the same as the source file. From the control file, it reads the
filetypes of the updates to be applied. In this example, it searches for the file FICA
UPDTUP1 and if found, applies the updates; then UPDATE searches for FICA
UPDTUP2, and applies those updates, if any. Last it searches for FICA
UPDTUP3, and applies those updates.

Notice that the updates are applied from the bottom of the control file, toward the
top. This becomes important when an update is dependent on a previous update.
For example, if you add some lines to a file in FICA UPDTUP1, then modify one
of those lines in FICA UPDTUP2, it is important that UPDTUP1 was applied first.

Alternate Ways of Specifying Multllevel Update Files:

AUX Files

The example above, showing FICA CNTRL and UPDTxxxx files, illustrates a
naming scheme using the UPDATE command defaults. You can override the
default file types for the control file's filename and filetype, as well as filetypes for
the update files.

If you name a control file GROUP A CNTRL, for example, you can specify the
name of the control file on the UPDATE command line:

update fica pliopt a groupa cntrl (ctl

Similarly, if your update files have unique filetypes, you must specify the entire
filetype in the control file. If your updates to FICA PLIOPT are named FICA
TEST!, FICA TEST2, and FICA TEST3, your control file may look like the
followirig:

TEXT MACS PLILIB
FICA3 TEST3
FICA2 TEST2
FICA1 TEST1

Regardless of the filetypes you choose, however, the filenames must always be the
same as the filename of the input source file.

The two levels of update processing shown so far may be adequate for your
applications. There is, however, an additional level, or step, in the update structure
that the VM/SP procedures use and which you may want to use also.

These techniques may be useful when you have more than one set of updates to
apply to a source program. For example, you may have two groups of
programmers who are working on different sets of changes for the same source file.
Each group may create several update files, and have a unique control file. When
you combine these changes, you could create one control file, or you can use what
are known as auxiliary control files.

The updating structure for auxiliary control files is based on conventions for
assigning filenames and filetypes. If a control file contains an entry that begins
with the characters "AUX," the UPDATE command assumes that the file "fn
AUXnnnn" contains a list of filetypes, not UPDATE control statements. For
example, if the file SAMPLE ASSEMBLE is being updated with a control file that
contains the record:

TEST1 AUXLIST

then SAMPLE AUXLIST does not contain UPDATE control statements; it
contains entries indicating the filetypes of the update files, all of which must have
the same filename, SAMPLE.

Let's expand the example to see how this structure works. We have the source file,
SAMPLE ASSEMBLE. The file SAMPLE CNTRL contains the entries:

TEXT MACS
3676 AUXLIST

The file, SAMPLE AUXLIST may look like the following:

Chapter 8. Programming for The CMS Environment 8-27

TEST1
FIXLOOP
BYPASS

The files:

SAMPLE TEST1
SAMPLE FIXLOOP
SAMPLE BYPASS

all contain UPDATE control statements (INSERT, DELETE, and so on) that are
to be applied to the file SAMPLE ASSEMBLE. As with control file processing,
the updates are applied from the bottom of the AUX file, so that the updates in
SAMPLE BYPASS are applied first, then the updates in SAMPLE FIXLOOP, and
so on. For an illustration of a set of update files, see Figure 8-5 on page 8-29.

Since the updating scheme uses only filetypes to uniquely identify update files, it is
possible to use the same control file to update different source input files. For
example, issue the following command when using the control file REPORT
CNTRL shown in Figure 8-5 •

update fica pliopt a report cntrl (ctl

The UPDATE command begins searching for updates to apply to FICA PLIOPT,
based on the entries in REPORT CNTRL: it searches for FICA AUXFIX, which
may contain entries pointing to update files; then it searches for FICA
UPDTREPl, and so on.

As long as all updates and auxiliary files associated with a source file have the
same filename as the source file, the updates are uniquely identifiable, so the same
control file can be used to update various source files. VM/SP takes advantage of
this capability in its own updating procedures. By maintaining strict naming
conventions, updates to various CP and CMS modules are easily controlled and
identified.

A control file may point to many AUX files in addition to many UPDT files. You
can modify a control file when you want to control which updates are applied to a
program, or you may have several control files, and specify the name of the control
file you want to use on the UPDATE command line. There is a lot of flexibility in
the UPDATE command processing; you can implement procedures and
conventions for your individual applications.

Multiple Updates with XEDIT

8-28 VM/SP eMS User's Guide

The XEDIT CTL option can be used to create multiple updates to a source file.
First, create a control file listing the updates to be applied to a source file. Initially,
you might have only the MACS record and one UPDATE filetype specified. For
example, you can create a file called FICA CNTRL that contains:

TEXT MACS PLILIB
FICA1 UPDTUP1

Next, specify the control file name that you have created after the XEDIT CTL
option. For example:

xedit fica pliopt (ctl fica

REPORT
UPDTPROC

WII .. .
. /R .. .
./0 .. .

REPORT CNTRL

TEXT MACS
UP2 UPDTPROC
LIST AUXLIST
UP1 UPDTREP1
TEXT AUXFIX

REPO'RT
AUXLlST

REPORT
FIXIN

REPORT
UPDTREP1

W/I •••
./0 .. .
./R .. .

REPORT
FIXOUT

ULJ
/I... ULJ/I .. .

. /R/R .. .

. /0... ./0 .. .

REPORT
AUXFIX

REPORT REPORT
RTNA RTNB

LUll... LUll .. .
. /R... ./R .. .
./0... ./0 .. .

update report assemble a (ctl)
UPDATING 'REPORT ASSEMBLE A1' WITH 'REPORT RTNA A1'.
UPDATING WITH 'REPORT RTNB A1'.
UPDATING WITH 'REPORT UPDTREP1 A1'.
UPDATING WITH 'REPORT FIXOUT A1'.
UPDATING WITH 'REPORT FIXIN A1'.
UPDATING WITH 'REPORT UPDTPROC A1'.
R;

FIpre 8-5. An Update with. CODtnJl ,.

The editor will search for an update file called FICA UPDTUPI and apply all
updates contained in this file. If the update file does not exist, XEDIT will create a
file called FICA UPDTUPI which will contain all changes made to the source file
during the editing session in addition to the required control statements.

If you wish to ~dd another level of updates to your source file, insert a new update
filetype in your control file after the MACS record, for example:

TEXT MACS PLILIB
FICA2 UPDTUP2
FICA1 UPDTUP1

Then, XEDIT your source file again, specifying the CTL option, for example:

xedit fica pliopt (ctl fica

Chapter 8. Programming for The CMS Environment 8-29

Preferred Level Updating:

8-30 VM/SP eMS User's Guide

XEDIT applies all updates contained in FICA UPDTUPI ,to the source file FICA
PLIOPT. After the resulting file is displayed, any additional updates and the
necessary control statements will automatically be inserted in another update file
called FICA UPDTUP2, consistent with control file processing from the bottom
up.

Auxiliary control files can also be used with XEDIT. You can make your control
file point to AUX files which contain the filetypes of the actual update files, or you
can combine AUX files and update files in a single control file. XEDIT begins
applying updates from the bottom up in the control file and references the AUX
files indicated. Any updates to the source file produced during the editing session
are inserted in the topmost update filetype specified in either the control file or in
the last AUX file encountered using the 'bottom up' processing rule. More
information about the XEDIT CTL option can be found in the VM / SP System
Product Editor Command and Macro Reference.

There may exist more than one version of an update, each applicable to different
versions of the same module. For example, you may need one version of an update
for an unmodified base source module, and another version of that update if that
module has been modified by a program product. The AUX file that will be used
to update a particular module must then be selected based on whether or not a
program product modifies that module. The AUX files listing the updates
applicable to modules modified by a program product are called "preferred AUX
files" because they must be used if they exist rather than the mutually exclusive
updates applicable to unmodified modules. Using this preferred AUX file concept,
every module in a component can be assembled using the one CNTRL file
applicable to a user's configuration.

A single A UX file entry in a CNTRL file can specify more than one filetype. The
first filetype indicates a file that UPDATE uses only on one condition: the files
that the second and subsequent filetypes indicate do not exist. If they do exist, this
AUX file entry is ignored and no updating is done. The files that the second and
subsequent filetypes indicate are preferred because, if they exist, UPDATE does
not use the file that the first filetype indicates. Usually, the preferred files appear
later in the CNTRL file in a format that causes them to be used for updating.

UPDATE scans each CNTRL file entry until a preferred filetype is found, until
there are no more filetypes on the entry, or until a comment is found. (A character
string that is less than four or more than eight characters is assumed to be a
comment.)

The VMFASM EXEC Procedure

If you are an assembler language programmer and you are using the UPDATE
command to update source programs you may want to use the VMF ASM EXEC
procedure. VMFASM is a VM/SP update procedure; it invokes the UPDATE
command and then uses the ASSEMBLE command to assemble the updated source
file.

If you are not an assembler language programmer, you may wish to create an
EXEC similar to VMF ASM that, instead of calling the assembler, calls one of the
language compilers to compile an updated source file.

When you use VMF ASM, you specify the source filename, the filename of the
control file, and optionally, parameters for the assembler. (The control file for
VMFASM must have a filetype of CNTRL). For example, if you use the file
GENERAL CNTRL to update SAMPLE ASSEMBLE, you enter the command
line:

vmfasm sample general

The VMF ASM EXEC uses the MACS card and the update level identifiers in the
control file. It reads the MACS card to determine which macro libraries
(MACLms)'should be searched by the assembler. Then VMFASM issues the
GLOBAL MACLm command specifying the MACLIBs you name on the MACS
card.

The update level identifier is used by VMF ASM to name the output text file
produced by the assembly. If the update level identifier of the most recent update
file (the last one located and applied) is anything other than TEXT, the update
level identifier is prefixed with the characters TXT to form the filetype. For
example, if the file GENERAL CNTRL contains the records:

TEXT MACS CMSLIB MYLIB OSMACRO
UP2 FIX2
UP1 FIX1
TEXT AUXLIST

and it is used to update the file SAMPLE ASSEMBLE, then:

• If the file SAMPLE UPDTFIX2 is found and the updates applied, VMF ASM
names the output text deck SAMPLE TXTUP2.

• If the file SAMPLE UPDTFIXl is found and the updates applied but no
SAMPLE UPDTFIX2 is found, the text deck is named SAMPLE TXTUP1.

• If the file SAMPLE AUXLIST is found but no SAMPLE UPDTFIXl or
SAMPLE UPDTFIX2 files are found, the text deck is named SAMPLE TEXT.

• If no files are found, the update level identifier on the MACS card is used and
the text deck is named SAMPLE TEXT.

The new fn TEXT or fn TXTxxxxx resides on the A-disk. Because the UPDATE
command works from the bottom of a control file toward the top, it is logical that
the text filename be taken from the identifier of the last update applied.

Chapter 8. Programming for The CMS Environment 8-31

The STK Option:

&TRACE ALL

The VMF ASM EXEC does not produce an updated source file, but leaves the
original source intact.

VMF ASM produces two output files:

• a printed output listing that shows update activity

• the text file, which contains the update log as well as the actual object code.

If you use the CMS LOAD command to load a text file produced by VMF ASM,
records from the update log are flagged as invalid, but the LOAD operation is not
impaired.

If you are interested in writing your own EXEC procedure to invoke the UPDATE
command, you may wish to use the STK option. The STK (stack) option is valid
only with the CTL option, and is meaningful only when the UPDATE command is
invoked within an EXEC procedure.

When the STK option is specified, UPDATE stacks the following data lines in the
console stack: '

first line: * update level identifier
second line: * library list from MACS record

The update level identifier is the identifier of the most recent update that was
found and applied.

For example, a CMS EXEC file that invokes the UPDATE command and then the
ASSEMBLE command may contain the lines:

UPDATE &1 ASSEMBLE * &2 CNTRL * (STK CTL
&READ VARS &STAR &TX
&READ VARS &STAR &LIB1 &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIB8
GLOBAL MACLIB &LIB1 &LIB2 &LIB3 &LIB4 &LIB5 &LIB6 &LIB7 &LIB8
&IF &TX NE TEXT FILEDEF TEXT DISK &1 TXT&TX A1
ASSEMBLE &1
ERASE $&1 ASSEMBLE

Below is a System Product interpreter EXEC that invokes the UPDATE command
and then the ASSEMBLE command:

/* Sample System Product interpreter EXEC to */
/* Update and Assemble a source program */
trace a
parse arg filename cntrlfile .

'UPDATE' filename 'assemble *' cntrlfile 'cntrl * (STK CTL'
parse pull star tx
parse pull star lib1 lib2 lib3 lib4 lib5 lib6 lib7 lib8

'GLOBAL MACLIB' lib1 lib2 lib3 lib4 lib5 lib6 lib7 lib8
if tx ,= TEXT then 'FILEDEF TEXT DISK' filename 'XT'tx 'A1'

'ASSEMBLE $'filename
'ERASE $'filename 'ASSEMBLE'

8-32 VM/SP eMS User's Guide

If the EXEC that you use is named UP ASM EXEC, it is invoked with the line:

upasm fica fica (print noxref

and the file FICA CNTRL contains:

MAC MACS CMSLIB OSMACRO MYTEST
FIX1 UPDTFIX
LIST AUXLIST

then the CMS EXEC executes the following commands:

UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL
GLOBAL MACLIB CMSLIB OSMACRO MYTEST
FILEDEF TEXT'DISK FICA TXTFIX1 A1
ASSEMBLE $FICA (PRINT NOXREF
ERASE $FICA ASSEMBLE

The System Product interpreter EXEC executes the following:

/* Update FICA ASSEMBLE using FICA CNTRL */
'UPDATE FICA ASSEMBLE * FICA CNTRL * (STK CTL'
'GLOBAL MACLIB CMSLIB OSMACRO MYTEST'
'FILEDEF TEXT DISK FICA TXTFIX1 A1'
'ASSEMBLE $FICA (PRINT NOXREF'
'ERASE $FICA ASSEMBLE'

The above examples assume that the update file FICA UPDTFIX was found and
applied.

Chapter 8. Programming for The CMS Environment 8-33

8-34 VM/SP eMS User's Guide

Chapter 9. Developing OS programs under eMS

CMS simulates many of the functions of the Operating System (OS), allowing you
to compile, execute and debug as programs interactively. For the most part, you
do not need to be concerned with the CMS as simulation routines; they are built
into the CMS system. Before you can compile and execute OS programs in CMS,
however, you must be acquainted with the following:

• OS macros that CMS can simulate
• Using as data sets in CMS
• How to use the FILEDEF command
• Creating CMS files from as data sets
• Using CMS and as macro libraries
• Assembling program in CMS
• Executing programs

These topics are discussed below. Additional information for as VSAM users is in
Chapter 11, "Using Access Method Services and VSAM Under CMS and
CMS/DOS" on page 11-1.

F or a practice terminal session using the commands and techniques presented in
this section, see Appendix F, "Sample Terminal Sessions."

Note: The CMS system uses many as terms, but there are a number of as
functions that CMS performs somewhat differently. Refer to Figure 9-1 on
page 9-2 to help you become familiar with some of the equivalents (where
they do exist) for as terms and functions. It lists some commonly-used as
terms and discusses how CMS handles the functions they imply.

Chapter 9. Developing OS programs under CMS 9-1

OS Term/Function eMS Equivalent

Cataloged procedure EXEC files can execute command sequences similar to cataloged
procedures, and provide for conditional execution based on return
codes from previous steps.

Data set Data sets are called files in CMS. CMS can simulate certain OS data
sets and can read real OS data sets only if they are sequential or
partitioned. CMS can never write to real OS data sets. CMS reads
and writes VSAM data sets.

Data Definition The FILEDEF command allows you to perform the functions of the
(DD) card DD statement to specify device types and output file dispositions.

Data Set Control Information about a CMS disk file is contained in a file status table
Block (DSCB) (FST).

EXEC card To execute a program in CMS you specify only the name of the
program if it is an EXEC, MODULE file, or CMS command. To
execute TEXT files, use the LOAD and START commands.

Job Control CMS and user-written commands perform the functions of JCL.
Language (JCL)

Link -editing The CMS LKED command creates LOADLIB libraries from CMS
TEXT files and/or OS object modules. The CMS LOAD command
loads TEXT files into virtual storage, anq resolves external
reference~; the GENMOD command creates absolute nonrelocatable
modules.

Load module Load modules are members of CMS LOADLIB libraries. LOADLIB
members are loaded, relocated, and executed by the OSRUN and
NUCXLOAD commands. Also, LOADLIB members are referenced
by the LINK, LOAD, ATTACH and XCTL macros.

Object module Language compiler output is placed in CMS files with a filetype of
TEXT.

Partitioned data set CMS MACLIBs, TXTLIBs, and LOADLIBs are the only CMS files
that resemble partitioned data sets.

SETPCAT, JOBCAT VSAM catalogs can be assigned for jobs or job steps in CMS by using
the special ddnames IJSYSCT and IJSYSUC when identifying
catalogs.

STEPLIB, JOBLIB The GLOBAL command establishes macro, text, and LOAD LIB
libraries; you can indirectly provide job libraries by accessing and
releasing CMS disks that contain the files and programs you need.

Utility program Functions similar to those performed by the OS utility programs are
provided by CMS commands.

Volume Table of The list of files on a CMS disk is contained in a file directory.
Contents (VTOC)

Figure 9-1. OS Terms and eMS Equivalents

Using OS Data Sets in eMS

9-2 VM/SP eMS User's Guide

You can have OS disks defined in your virtual machine configuration; they may be
either entire disks or minidisks: their size and extent depends on their VM/SP
directory entries. You can use partitioned and sequential data sets on OS disks in
CMS. If you want, you can create CMS files from your OS data sets. If you have

Command

ACCESS

ASSEMBLE

DDR

DLBL

FILEDEF

GLOBAL

LKED

LISTDS

MOVEFILE

NUCXLOAD

OSRUN

QUERY

RELEASE

STATE

data sets on OS disks, you can read them from programs you execute in CMS, but
you cannot update them. The CMS commands that recognize OS data sets on OS
disks are listed in Figure 9-2.

Operation

Makes the OS disk containing the data set available to your CMS virtual
machine.

Assembles an OS source program under CMS.

Copies an entire OS disk to tape.

Defines OS data sets for use with access method services and VSAM files for
program input/output.

Defines the OS data set for use under CMS by associating an OS ddname
with an OS data set name. Once defined, the data set can be used by an OS
program running under CMS and can be manipulated by the other commands
that support OS functions.

Makes macro libraries or LOAD LIB libraries available to CMS. You can
prepare an OS library for reference by the GLOBAL command by issuing a
FILEDEF command for the data set and giving the data set the appropriate
file type of MACLIB or LOADLIB.

Creates CMS LOADLIB libraries from CMS TEXT files and or OS object
modules.

Lists information describing OS data sets residing on OS disks.

Moves data records from one device to another device. Each device is
specified by a ddname, which must have been defined via FILEDEF. You
can use the MOVEFILE command to create CMS files from OS data sets.

Loads, relocates, and establishes as a nucleus extension a load module either
from a CMS LOADLIB , an OS module library or an OS formatted disk.

Loads, relocates, and executes a load module either from a CMS LOADLIB
or from an OS module library on an OS formatted disk.

Lists (1) the files that have been defined with the FILEDEF and DLBL
commands (QUERY FILEDEF, QUERY DLBL), or (2) the status of OS
disks attached to your virtual machine (QUERY DISK, QUERY SEARCH).

Releases an OS disk you have accessed (via ACCESS) from your CMS
virtual machine.

Verifies the existence of an OS data set on a disk. Before STATE can verify
the existence of the data set, you must have defined it (via FILEDEF).

Figure 9-2. CMS Commands that Recognize OS Data Sets on OS Disks

Access Methods Supported by eMS

OS access methods are supported, to varying extents, by CMS. Under CMS, you
can execute programs that use· the OS data management macros that are supplied
for the access methods listed in Figure 9-3

Chapter 9. Developing OS programs under CMS 9-3

CMS Support for OS CMS Support for Real
Simulated Data Sets, OS Data Sets on OS

Access Method on CMSDisks Disks

BDAM Yes No

BPAM Yes Yes (read only)

BSAM Yes , Yes (read only)

QSAM Yes Yes (read only)

VSAM No Yes

Figure 9-3. Access Methods Supported by eMS

OS Simulated Data Sets

I

9-4vM!SP eMS User's Guide

BPAM, BSAM, and QSAM:

BDAM:

You can execute programs in CMS that read records from OS data
sets using the BP AM, BSAM, or QSAM access methods. You cannot,
however, write or update OS data sets that reside on OS disks.

CMS can neither read nor write OS data sets on OS disks using the
BDAM access method.

VSAM Files:
CMS can read and write VSAM files on OS disks. For information on
using VSAM under CMS, see Chapter 11, "Using Access Method
Services and VSAM Under CMS and CMS/DOS" on page 11-1,

If you want to test programs in CMS that create or modify OS data sets, you can
'write "OS simulated data sets." These are CMS files that are maintained on CMS
disks, but in OS, format rather than in CMS format. Since they are CMS files, you
can edit, rename, copy, or manipulate them just as you would any other CMS file.
Since they are in OS,-simulated format, files with variable-blocked records may
contain block and record descriptor words so that the access methods can
manipulate them properly.

Th~ files that you create from OS programs do not necessarily have to be OS
simulated data sets. You can create CMS files. The format of an output file
depends on how you specify the'filemode nl!mber when you issue the FILEDEF
command to identify the file to CMS. If you specify the filemode number as 4,
CMS creates a file that is in OS simulated data set format on a CMS disk. If you
want to read an OS simulated dataset that is variable blocked or fixed blocked,
rename the dataset with a filemode number of 4. CMS OS simulation routines are
then able to read short blocks that are not filled with records.

CMS can read and write OS simulated data sets using the BDAM, BP AM, BSAM,
and QSAM access methods.

When an input or output error occurs, do not depend on OS sense bytes. An error
code is supplied by CMS in the ECB in place of the sense bytes. These error codes
differ for various types of devices and their meaning can be found in the VM/SP
System Messages and Codes under DMSxxxI20S.

Note: Results may be unpredictable if two DCBs access the same data set
at the same time.

Restrictions for Reading OS Data Sets

The following restrictions apply when you read OS data sets from OS disks under
CMS:

• Read-password-protected data sets are not read.

• RACF password protection is ignored.

• BDAM and ISAM data sets are not read.

• Multivolume data sets are read as single-volume data sets. End-of-volume is
treated as end-of-file and there is no end-of-volume switching.

• Keys in data sets with keys are ignored; only the data is read.

• User labels in user-labeled data sets are bypassed. See "Tape Labels in CMS"
for details.

• Results may be unpredictable if two D~Bs access the same data set at the same
time.

• An Indexed VTOC on an OS di~k is read the same as a standard OS VTOC
since there is no special support in CMS for this.

Using the FILEDEF Command

Specifying the ddname

Whenever you execute an OS program under CMS that has input and/or output
files, or you need to read an OS data set onto a eMS disk, you must first identify
the files to CMS with theFILEDEF command. The FILEDEF command in CMS
performs the same functions as the data definition (DD) card in OS job control
language (JCL): it describes the input and output files.

When you enter the FILEDEF commalld, you specify:

• The ddname
• The device type
• A file identification, if the device type is DISK
• Type of label on your tape file, if tape label processing is specified
• Options (if necessary)

Some guidelines for entering these specifications follow.

If the FILEDEF command is issued for a program input or output file, then the
ddname must be the same as the ddname or file name specified for the file in the
source program. For example, you have an assembler language source program
that contains the line:

INFILE DCB DDNAME=INPUTDD,MACRF=GL,DSORG=PS,RECFM=F,LRECL=80

For a particular execution of this program, you want to use as your input file a
CMS file on your A-disk that is named MYINPUT FILE. You must then issue a
FILEDEF for this file before executing the program:

filedef inputdd disk myinput file a1

. Chapter 9. Developing OS programs under CMS- ·9-5

Specifying the Device Type

Entering File Identifications

9-6 VM/SP eMS User's Guide

If the input file you want to use is on an OS disk accessed as your C-disk, and it
has a data set name of PA YROLL.RECORDS.AUGUST, then your FILEDEF
command might be:

filedef inputdd c1 dsn payroll.records.august

For input files, the device type you enter on the FILEDEF command indicates the
. device from which you want records read. It can be DISK, TERMINAL,
READER (for input from real cards or virtual cards), or TAPn (for tape). Using
the above example, if your input file is to be read from your virtual card reader, the
FILEDEF command might be as follows:

filedef inputdd reader

Or, if you were reading from a tape attached to your virtual machine at virtual
address 181 (TAP1):

filedef inputdd tap1

For output files, the device you specify can be DISK, PRINTER, PUNCH, TAPn
(tape), or TERMINAL.

If you do not want any real I/O performed during the execution of a program for a
disk input or output file, you can specify the device type as DUMMY:

filedef inputdd dummy

If you are using a CMS disk file for your input or output, you specify:

filedef ddname disk filename filetype filemode

Note: If * is used for the filemode of an output file, unpredictable results
may occur.

The filemode field is optional; if you do not specify it, your A-disk is assumed. If
you want an output file to be constructed in OS simulated data set format, you
must specify the filemode number as 4. For example, a program contains a DCB
for an output file with a ddname of OUTPUTDD, and you are using it to create a
CMS file named DAILY OUTPUT on your B-disk:

filedef outputdd disk daily output b4

If your input file is an OS data set on an OS disk, you can identify it in several
ways:

• If the data set name has only two qualifiers, for example
HEAL TH.RECORDS, you can specify:

filedef inputdd disk health records b1

• If it has more than two qualifiers, you can use the DSN keyword and enter:

filedef inputdd b1 dsn health records august 1974
-- or --

filedef inputdd b1 dsn health.records.august.1974

Or you can request a prompt for a complete data set name:

filedef inputdd b1 dsn ?
ENTER DATA SET NAME:
health.records.august.1974

Note: When you enter a data set name using the DSN keyword, either with or
without a request for prompting, you should omit the device type specification
of DISK, unless you want to assign a CMS file identifier, as in the example
below.

• You can also relate an OS data set name to a CMS file identifier:

filedef inputdd disk ossim file c1 dsn monthly records
-- or --

filedef inputdd disk ossim file c1 dsn monthly.records

Then you can refer to the OS data set MONTHLY.RECORDS by using the
CMS file identifier, OSSIM FILE:

state ossim file c

When you do not issue a FILEDEF command for a program input or output
file, or if you enter only the ddname and device type on the FILEDEF
command, such as:

filedef oscar disk

then CMS issues a default file definition, as follows:

FILEDEF ddname DISK FILE ddname A1

where ddname is the ddname you assigned in the DDNAME operand of the
DCB macro in your program or on the FILEDEF command. For example, if
you assign a ddname of OSCAR to an output file and do not issue a FILEDEF
command before you execute the program, then the CMS file FILE OSCAR
A 1 is created when you execute the program. If the filetype of a CMS input
file, FILE ddname A1, is the same as the assigned DDNAME, the file can be
identified by a default file definition. Even though an input file can be defined
explicitly or by default, if an attempt is made to read the file and the file is not
found, unpredictable results my occur.

Specifying eMS Tape Label Processing

Specifying Options

You can use the label operands on the FILEDEF command to indicate that CMS
tape label processing is not desired (this is the default). If CMS tape label
processing is desired you can use the label operands on the FILEDEF command to
indicate the types of labels on your tape. See "Tape Labels in CMS" on page 6-11
for a description of CMS tape label processing.

The FILEDEF command has many options; those mentioned below are a sampling
only. For complete descriptions of all the options of the FILEDEF command, see
the VM / SP CMS Command and Macro Reference.

Chapter 9. Developing OS programs under CMS 9-7

BLOCK, LRECL, RECFM, DSORG

PERM

9-8 VM/SP eMS User's Guide

If you are using the FILEDEF comriland to relate a data control block (DCB) in a
program to an input or output file, you may need to supply some of the file format
information, such as the record length and block size, on the FILEDEF command
line. For example, if you have coded aDCBmacro for an output file as follows:

OUTFILE DCB DDNAME=OUT,MACRF=PM,DSORG=PS

then, when you are issuing a FILEDEF for this ddname, you must specify the
format of the file. To create an output file on disk, blocked in OS simul~ted data
set format, you could issue:

filedef out disk myoutputfile a4 (recfm fb lrecl 80 block 1600

To punch the output file onto cards, you would issue:

filedefout punch'{lrecl 80 recfm f

You must supply file format information on the FILEDEF command line whenever
it is not supplied on the DCB macro, except for existing disk files. When the
OPEN macro instruction is executed, the CMS simulation of the OS OPEN routine
initializes·theData Control Block (DCB). The DCB fields are filled in with
information from the DCB macro instruction, the information specified on the
FILEDEF command, or if the data set already exists, the data set label. However,
if more than one source specified information for.a particular field, only one source
is used.

The order in which the DCB fields are filled follows:

1. The DCB macro instruction in·your·program.
2. The fields you had specified on the FILEDEF command
3. The data set label if the data set already exists.

The DCB macro instruction takes precedence over the FILEDEF and the data set
label. The FILEDEF takes precedence over the data set label.

Data set label information from an existing CMS file is used only when the OPEN
is for input or update, otherwise, the OPEN routine erases the existing file. You
can modify any DCB field either before the data set is opened or through a Data
Control Block exit of EXIT LIST (EXLST) options. When the data set is closed,
the Data Control Block is restored to its original condition. Fields that were
merged in at OPEN time from the FILEDEF and the data set label are cleared.

Usually, when you execute one of the language processors, all existing file
definitions are cleared. If the development of. a program requires you to recompile
and re-execute it frequently, you might want to use the PERM option when you
issue file definitions for your input and output files. For example:

cp spool punch to *
filedef indd disk test file al (lrecl 80 perm
filedef outdd punch (lrecl 80 perm

In this example, since you spooled your virtual punch to your own virtual card
reader, output files are placed in your virtual reader. You can either read or delete
them.

DISPMOD

MEMBER

AUXPROC

All file definitions issued with the PERM option stay in effect until you log off,
specifically clear those definitions, or redefine them:

filedef indd clear
filedef outdd tap1 (lrecl 80

In the above example, the definition for INDD is cleared; OUTDD is redefined as a
tape file.

When you issue the command:

filedef * clear

all file definitions are cleared, except those you enter with the PERM option.

When a program abends, or when you issue the HX Immediate command, all file
definitions are cleared, including those entered with the PERM option.

When you issue a FILEDEF command for an output file and assign it a CMS file
identifier that is identical to that of an existing CMS file, then when anything is
written to that ddname the existing file is replaced by the new output file. If you
want, instead, to have new records added to the bottom of the existing file, you can
use the DISP MOD option:

filedef outdd disk new update a1 (disp mod

The file must be on a disk accessed as read/write. Note that an extension of a disk
is read/only. When adding new records using the DISP MOD option, erase the
end-of-file (EOF) mark at the end of the existing file for fixed-block (FB) OS
simulated files (filemode of A4).

If the file you want to read is a member of an OS partitioned data set (or a CMS
MACLIB or TXTLIB), you can use the MEMBER option to specify the
membername; for example:

filedef test c dsn sys1.maclib (member'test

defines the member TEST from the OS macro library SYSl.MACLIB.

This option allows an auxiliary processing routine to receive control during I/O
operations. It is valid only when FILEDEF is executed by an internal program call
and cannot be entered on a terminal command. For details on how to use this
option of the FILEDEF command, see the VM / SP System Programmer's Guide.

Creating CMS Files From OS Data Sets

If you have data sets on OS disks, or on tapes or cards, you can copy them into
CMS files so that you can edit, modify, or manipulate them with CMS commands.
The CMS MOVEFILE command copies OS (or CMS) files from one device to
another. You can move data sets from any valid input device to any valid output
device.

Chapter 9. Developing OS programs under CMS 9-9

Before using the MOVEFILE command, you must define the input and output data
sets or files and assign them ddnames using the FILEDEF command. If you use
the ddnames INMOVE and OUTMOVE, then you do not need to specify the
ddnames when you issue the MOVEFILE command. For example, the following
sequence of commands copies a CMS disk file into your virtual card punch:

filedef inmove disk diskin file a1
filedef outmove punch
movefile'

The result of these commands is effectively the same as if, you had issued the
command:

punch diskinfile (noheader

The example does, however, illustrate the basic relationship between the FILEDEF
and MOVEFILE commands. In addition to the MOVEFILE command, if the OS
input data set is on tape or cards, yotican use the T APPDS or READCARD
command to create CMS files. These are also discussed below.

Note: The MOVEFILE command does not support data containing
spanned records.

Copying Sequential Data Sets from Disk

The MOVEFILE command copies a sequential OS disk data set from a read-only
OS disk into an integral CMS file on a CMS read/write disk. You use FILEDEF
commands to identify the input file disk mode and data set name:

filedef inmove c1 dsn sales.manual

the CMS output file's disk location and fileid:

filedef outmove disk sales manual a1

and then you issue the MOVEFILE command:

movefile

Copying Partitioned Data Sets From Disk

9-10 VM/SP eMS User's Guide

The MOVEFILE command can copy partitioned data sets (PDS) into CMS disk
files, and create separate CMS files for each member of the data set. You can have
the entire data set copied, or you can copy only a selected member. For example,
if you have a partitioned data set named ASSEMBLE. SOURCE whose members
are individual assembler language source files, your input file definition might be:

filedef inmove c1 dsn assemble source
or

filedef inmove c1 dsn assemble. source

To create individual CMS ASSEMBLE files, you would issue the output file
definition as:

filedef outmove disk qprint assemble a1

Then use the PDS option of the MOVEFILE command:

movefile (pds

Using eMS Libraries

When the CMS files are created, the filetype on the output file definition is used
for the filetype and the member names are used instead of the CMS filename you
specified.

If you want to copy only a single member, you can use the MEMBER option of the
FILEDEF command:

filedef inmove disk assemble source c (member qprint

and omit the PDS option on the MOVEFILE command:

movefile

Figure 9-4 on page 9-12 summarizes the various ways that you can create CMS
files from OS data sets.

CMS provides three types of libraries to aid in OS program development:

• Macro libraries contain macro definitions and/or copy files

• Text, or program libraries contain relocatable object programs (compiler
output)

• LOADLIB libraries contain link edit files (load modules)

These CMS libraries are like OS partitioned data sets; each has a directory and
members. Since they are not like other CMS files, you create, update, and use them
differently than you do other CMS files. Although these library files are similar in
function to OS partitioned data sets, OS macros should not be used to update them.
Macro libraries are discussed below; text libraries are discussed under "TEXT
Libraries (TXTLIBs)," and LOADLIB libraries are discussed under "Executing
Members of OS Modules Libraries or CMS LOADLIBS."

A CMS macro library has a filetype of MACLIB. You can create a MACLIB from
files with filetypes of MACRO or COPY. A MACRO file may contain macro
definitions; COpy files contain predefined source statements.

Chapter 9. Developing OS programs under CMS 9-11

Input Fil~: An OS sequent~al data set named:COMPUTE.TEST.RECORDS
--~---------------------------
Source I CMS Command Examples I CMS Output File

Disk: I filedef indd cl dsn compute test records
OS R/O I filedef outdd disk compute records al
C-disk I movefile indd outdd

I COMPUTE RECORDS Al
I
I

Tape:
181

Cards

I filedef inmove tapl (lrecl 80 I TEST RECORDS Al
I filedef outmove disk test records al I
, movefile I
I---~----~----~-~--
I tappds newtest compute (nopds I NEWTEST COMPUTE Al

I filedef cardin reader I COMPUTE CARDS Al
I filedef diskout disk compute cards al I
I movefile cardin diskout 1
I-~------------~---
I readcard compute test I COMPUTE TEST Al

Input file: OS partitioned data set named: TEST.CASES
Members named: SIMPLE, COMPLEX, MIXED

Source I CMS Command Examples I CMS Output File(s)

Disk:
OS R/O
C-disk

Tape:
182

I filedef infile disk test cases cl I SIMPLE TESTCASE Al
I'filedef outfile disk riew testcase al I COMPLEX TESTCASE Al
I movefile infile outfile (pds , MIXED TESTCASE
1--
I filedef in cl dsn test cases (member simple I FILE RUN Al
I filedef run disk i
I movefile"in run I

tappds * testrun (tap2 I SIMPLE TESTRUN Al
I COMPLEX TESTRUN Al
I MIXED TESTRUH Al

Figure 9-4. Creating CMS Files from OS Data Sets

The MACLIB Command

9-12 VM/SP,CMSUser's Guide

When you want to assemble or compile a source program that uses macro or copy
definitions, you must ensure that the library containing the code is identified before
you invoke the compiler. Otherwise, the library is not searched. You identify
libraries to be searched using the GLOBAL command. For example, if you have
two MACLIBs that contain your private macros and copy files whose names are
TESTMAC MACLIB and TESTCOPY MACLIB, you would issue the command:

global maclib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the order
you specify them. A GLOBAL command remains in effect for the remainder of
your terminal session, until you issue another GLOBAL MACLIB command or
IPL CMS again. To find out what macro libraries are currently available for
s(!arching, issue the command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

the MACLIB command performs a variety of functions. You use it to:

GEN Function

• Create the MACLm (GEN function)
• Add, delete, or replace members (ADD, DEL, and REP functions)
• Compress the MACLm (COMP function)
• List the contents of the MACLIB (MAP function)

Descriptions of these MACLIB command functions follow.

The GEN (generate) function creates a CMS macro library from input files
specified on the command line. The input files must have filetypes of either
MACRO or COPY. For example:

maclib gen~~)access time put regequ

creates a macro library wiUe ru; ident~ACLm Ai from macros
existing in the.files with the file identifiers: ---

ACCESS {MACRO} f TIME -{MACRO}, PUT {MACRO}, and REGEQU {MACRO}
COpy COpy COpy COpy

If a file named OSMAC MACLIB At already exists, it is erased.

Assume that the files ACCESS MACRO, TIME COPY, PUT MACRO, and
REGEQU COpy exist and contain macros in the following form:

ACCESS MACRO TINE COpy PUT MACRO REGEQU COpy ---- ---
GET *COPY TTIMER PUT XREG

TTIMER
PUT *COPY STIMER YREG

STIMER

The resulting file, OSMAC MACLIB At, contains the members:

GET
PUT
TTIMER

STIMER
PUT
REGEQU

The PUT macro, which appears twice in the input to the command, also appears
twice in the output. The MAC LIB command does not check for duplicate macro
names. If, at a later time, the PUT macro is requested from OSMAC MACLm,
the first PUT macro encountered in the directory is used.

When COpy files are added to MACLIBs, the name of the library member is
taken from the name of the COPY file, or from the *COPY statement, as in the file
TIME COPY, above.

Note: Although the file REGEQU COpy contained two macros, they were
both included in the MACLIB with the name REGEQU. When the input
file is a MACRO file, the member name(s) are taken from macro prototype
statements in the MACRO file.

The ADD function appends new members to an existing macro library. For
example, assume that OSMAC MACLIB At exists as created in the example in the
explanation of the GEN function and the file DCB COpy exists as follows:

Chapter 9. D~veloping OS programs under CMS 9-13

REP Function

DEL Function

COMP Function

9-14 VM/SP eMS User's Guide

*COpy DeB
DeB macro definition

*COPY DeBD
DeBD macro definition

If you issue the command:

maclib add osmac ~~"

the resulting OSMAC ~~CL'. At contains the members:

GET PUT
PUT R~~ /
TTIMER (---5e~..:)~'
STIMER ,2?~BD __ /

The REP (replace) function deletes the directory entry for the macro definition in
the files specified. It then appends new macro definitions to the macro library and
creates new directory entries. For example, assume that a macro library MYMAC
MACLIB contains the members A, B, and C, and that the following command is
entered:

maclib rep mymac a c

The files represented by file identifiers A MACRO and C MACRO each have one
macro definition. After execution of the command, MYMAC MACLIB contains
members with the same names as before, but the contents of A and C are different.

The DEL (delete) function removes the specified macro name from the macro
library directory and compresses the directory so there are no unused entries. The
macro definition still occupies space in the library, but since no directory entry
exists it cannot be accessed or retrieved. If you attempt to delete a macro for
which two macro definitions exist in the macro library,' only the first one
encountered is deleted. For example:

maclib del osmac get put ttimer deb

deletes macro names GET, PUT, TTIMER, and DCB from the directory of the
macro library named OSMAC MACLIB. Assume that OSMAC exists as in the
ADD function example. After the above command, OSMAC MACLIB contains
the following members:

STIMER
PUT
REGEQU
DeBD

Execution of a MACLIB command with the DEL or REP functions can leave
unused space within a macro library. The COMP (compress) function removes any
macros that do not have directory entries. This function uses a temporary file
named MACLm CMSUTt. For example, the command:

maclib comp mymac

compresses the library MYMAC MACLIB.

MAP Function

The MAP function creates a list containing the name of each macro in the
directory, the size of the macro, and its position within the macro library. If you
want to display a list of the members of a MACLffi at the terminal, enter the
command:

maclib map mylib (term

The default option, DISK, creates.a file on your A-disk, which has a filetype of
MAP and a filename corresponding to the filename of the MACLffi. If you specify
the PRINT option, the list is spooled to your virtual printer.

Note: The TERM and PRINT options will erase the old MAP file.

Manipulating MACLIB Members

The following CMS commands have MEMBER options, which allow you to
reference individual members of a MACLIB:

• PRINT (to print a member)
• PUNCH (to punch a member)
• TYPE (to display a member)
• FILEDEF (to establish a file definition for a member)

You can use the CMS editor to create MACRO and COpy files and then use the
MACLIB command to place the files in a library. Once they are in a library, you
can erase the original files.

To extract a member from a macro library, you can use either the PUNCH or the
MOVEFILE command. If you use the PUNCH command you can spool your
virtual card punch to your own virtual reader:

cp spool punch to *

Then punch the member:

punch testmac maclib (member get noheader

and read it back onto disk:

readcard get macro

In the above example, the member was punched with the NOHEADER option of
the PUNCH command, so that a name could be assigned on the READCARD
command line. If a header card had been created for the file, it would have
indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for the input
member name and the output macro or copy name before entering the
MOVEFILE command:

filedef inmove disk testcopy mac lib (member enter
filedef outmove disk enter copy a
movefile

This example copies the member ENTER from the macro library TESTCOPY
MACLIB into a CMS file named ENTER COPY.

Chapter 9. Developing OS programs under CMS 9-15

System MA CLIBs

Using os Mocro Librories '

9-16' ,VM/SP eMS User's Guide

When you use the PUNCH or MOVEFILE commands to extract members from
CMS MACLIBs, each member is followed by a / / record, which is a MACLIB
delimiter. You can edit the file and use the DELETE subcommand to delete the / /
record.

If you wish to move the complete MACLIB to another file, use the COPYFILE
command.

The maCrO libraries that are on the system disk contain CMS and OS assembler
language macros that you may want to use in your programs:

• CMSLIBMACLIB contains the CMS macros from VM/370.

• DMSSP MACLIB contains the macros that are new or changed in VM/SP.

Note: ,When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP should
precede CMSLIB in the search order.

• OSMACRO MACLIB contains the OS macros that CMS supports or simulates
or those that require no CMS support.

• OSMACROI MACLIBcontains the macros CMS does not support or
simulate.· "(You Can assemble programs in CMS that contain these macros, but
you must execute them in an OS virtual machine.)

• 'OSVSAM MACLm contains the subset of supported OS/VSAM macros.

•

•

TSOMAC MACLIB contains TSO macros.

DOSMACRO MACLIB contains macros used internally in CMS/DOS.

Note: The DOSMACRO MACLIB contains macros used internally by
CMS/DOSsystem routines; These macros should not be used in user written
programs.

To obtain a Ust of the macros in' any of these libraries, use the MAP function of the
MACLIB co~and.

If you want to assemble source programs that contain macro statements that are
defined in macro libraries on your OS disks, you can use the FILEDEF command
to identify them to CMS so that you can name them when you issue the GLOBAL
command. For example, the commands:

filedef cmslib disk temp maclib c dsn test asm macros
global·maclib .. temp

allow you to access the macro library TEST.ASM.MACROS on the OS disk
acc~ssed as yourC~disk.

When you issue a FILEDEF command for an assembler language macro library
you must use a ddname of CMSLIB and you must provide a CMS file identifier for
the OS data set. In the example above, the OS macro library
TEST.ASM.MACROS is given the CMS file identifier TEMP MACLIB.

If you want to use more than one OS macro library you must issue a FILEDEF
command for each library using the ddname CMSLm and specifying the
CONCAT option. For example:

filedef cmslib disk asp1 maclib * dsn asp1.macros.r1 (concat recfm fb block 3360 lrecl 80
filedef cmslib disk asp2 maclib * dsn asp2.macros.r1 (concat
filedef cmslib disk sys1 maclib * (concat
global maclib asp1 asp2 sys1 osmacro cmslib

The GLOBAL command establishes the search order of the libraries as:
ASP1.MACROS.R1, ASP2.MACROS.R1, SYS1.MACLIB, OSMACRO
MACLIB, and CMSLIB MACLIB.

Note: The third library specified is entered in an abbreviated form. You
can use this form when the data set name of the macro library has only two
qualifiers and the second qualifier is MACLIB; thus, the equivalency is
established between SYS 1.MACLIB and the CMS file identifier SYS 1
MACLIB.

The file format information describes the macro libraries to CMS; when you are
concatenating OS macro libraries, they must all be in the same format, since the
options entered on the first FILEDEF command are applied to all the libraries.

Also, if you want to use the FILEDEF option CONCAT, the first FILEDEF
command for concatenated macro libraries should describe the first library in the
GLOBAL command. When a concatenated macro library is closed after use, the
CMS filename in the FCB is restored to the first name in the global list. If this is
not the one specified on the original FILEDEF, subsequent use may cause errors.
Reissue the FILEDEF command.

If you are using only one OS macro library in addition to CMS MACLIBs you can
enter:

filedef cmslib disk lib1 maclib * dsn sys1.maclib
global maclib lib1 cmslib

To identify libraries for use with the language processors, you must use the ddname
SYSLIB.

Using the CONCAT option for the first FILEDEF (with PERM opt~on) for
concatenated libraries may cause errors if the FILEDEF is not cleared before
subsequent use of FILEDEF.

Using OS Macro Simulation Under eMS

CMS provides routines that simulate the OS functions required to support OS
language processors and user-written programs. CMS functionally simulates the
OS macros in such a way that equivalent results are presented to programs
executing under CMS.

Figure 9-5 on page 9-19 lists the as macros and their functions that CMS partially
or completely simulates. The macros that are listed as "effective no-op" and
"no-op" are macros that are not supported in CMS; you can assemble programs

Chapter 9. Developing OS programs under CMS 9-17

that contain these macros. However, when you execute them in eMS, the macro
functions are not performed. To execute these programs, you must run them in an
OS virtual machine.

For a more detailed description of how eMS simulates the functions of these
macros, and to see whether any particular function of a macro is not supported, see
theVM/SP System Programmer's Guide.

OS Data Management Simulation

9-18 VM/SP eMS User's Guide

A eMS file produced by an OS program running under ,eMS and written on a
eMS disk, has a different format than that of an OS data set produced by the same
OS program running under OS and written on an OS disk. The data is the same,
but, the format is different. eMS can read, write, or update any OS data that
resides on a eMS disk.

Macro SVCNo. Function

ABEND 13 Terminate processing

ATTACH 42 Effective LINK

BLDL 18 Build a directory list for a PDS

BSP 69 Back up a record on a tape or disk

CHAP 44 Effective no-op

CHECK - Verify READ IWRITE macro completion

CHKPT 63 Effective no-op

CLOSE 20 Deactivate a data file

DCB - Construct a data control block

DCBD - Generate a DSECT for a data control block

DELETE 09 Delete a loaded phase

DEQ 48 Effective no-op

DETACH 62 Effective no-op

DEVTYPE 24 Obtain device-type characteristics

ENQ 56 Effective no-op

EXIT lRETURN 03 Return from called phase

EXTRACT 40 Effective no-op

FEOV 31 Set forced EOV error code

FIND 18 Locate a member of a partitioned data set

FREEDBUF 57 Release a free storage buffer

FREEMAIN 05 Release user-acquired storage

FREEMAIN 10 Manipulate user free storage

FREEPOOL - Simulate as SVC 10

GET - Read system-blocked data (QSAM)

GETMAIN 04 Conditionally acquire user storage

GETMAIN 10 Manipulate user free storage

GETPOOL - Simulate as SVC 10

IDENTIFY 41 Add entry to loader table

LINK 06 Link control to another phase

LOAD 08 Read a phase into storage

NOTE - Manage data set positioning

OPEN 19 Activate a data file

OPENJ 22 Activate a data file

PGRLSE 112 Release. storage contents

POINT - Manage data set positioning

POST 02 Post the 110 completion

PUT - Write system-blocked data (QSAM)

Figure 9-5 (Part 1 of 2). OS Macros Simulated by eMS

Chapter 9. Developing OS programs under eMS 9-19

Macro SVCNo. Function

RDJFCB 64 Obtain information from FILEDEF command

READ - Access system-record data

RESTORE 17 Effective no-op

RETURN - Return from a subroutine

SAVE - Save program registers

SNAP 51 Dump specified areas of storage

SPIE 14 Allow processing program to handle program interrupts

STAB 60 Allow processing program to decipher abendconditions

STAX 96 Create an attention exit block

STIMER 47 Set timer

STOW 21 Manipulate partitioned directories

SYNADAF - Provide SYNAD analysis function

SYNADRLS - Release SYNADAF message and save areas

TCLEARQ 94 Clear terminal input queue

TCLOSE 23 Temporarily deactivate a data file

TGET/TPUT 93 Read or write a terminal line

TIME 11 Get the time of day

TRKBAL 25 no-op

TTIMER 46 Access or cancel timer

WAIT 01 Wait for an I/O completion

WRITE - Write system-record data

WTO/WTOR 35 Communicate with the terminal

XCTL 07 Delete, then link control to another load phase

XDAP 00 Read or write direct access volumes

Figure 9-5 (Part 2 of 2). OS Macros Simulated by eMS

Assembling Programs in eMS

9-20 VM/SP eMS User's Guide

To assemble assembler language source programs into object module format, you
can use the ASSEMBLE command, and specify assembler options on the command
line; for· example:

assemble myfile (print

assembles a source program named MYFJLE ASSEMBLE and directs the output
listing to the printer. All of the ASSEMBLE command options are listed in the
VM/SP CMS Command and Macro Reference.

When you invoke the ASSEMBLE command specifying a file with the filetype of
ASSEMBLE, CMS searches all of your accessed disks, using the standard search .
order, until it locates the specified file. When the assembler creates its output listing
and text deck, it creates files with filetypes of LISTING and TEXT, and writes
them onto disk according to the following priorities:

Executing Programs

1. If the source file is on a read/write disk, the TEXT and LISTING files are
written onto that disk.

2. If the source file is on a read-only extension of a read/write disk, the TEXT
and LISTING files are written onto the parent disk.

3. If the source file is on any other read-only disk, the TEXT and LISTING files
are written onto the A-disk.

4. If none of the above choices are available, the command is terminated.

In all of the above cases, the TEXT and LISTING files have a filename that is the
same as the input ASSEMBLE file.

The input and output files used by the assembler are assigned by FILEDEF
commands that CMS issues internally when the assembler is invoked. If you issue
a FILEDEF command using one of the assembler ddnames before you issue the
ASSEMBLE command, you can override the default file definitions.

The ddname for the source input file (SYSIN) is ASSEMBLE. If you enter:

filedef assemble reader
assemble sample

then the assembler reads your input file from your card reader, and assigns the
filename SAMPLE to the output TEXT and LISTING files.

You could assemble a source file directly from an OS disk by entering:

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

In this example, the CMS file identifier MYFILE ASSEMBLE is assigned to the
data set OS.SOURCE.FILE and then assembled.

LISTING and TEXT are the ddnames assigned to the SYSPRINT and SYSLIN
output of the assembler. You might assign file definitions to override these defaults
as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble myfile

In this example, output from the assembly of the file, myfile ASSEMBLE, is
written to the files, ASSEMBLE LISTFILE and ASSEMBLE TEXTFILE.

The ddnames PUNCH and CMSLffi are used for SYSPUNCH and SYSLffi data
sets. PUNCH output is produced when you use the DECK option of the
ASSEMBLE command. The default file definition for CMSLm is the macro
library CMSLffi MACLffi, but you must still issue the GLOBAL command if you
want to use it.

After you have assembled or compiled a source program you can execute the
TEXT files that were produced by the assembly or compilation. You may not,

Chapter 9. Developing OS programs under CMS 9-21

Executing TEXT Files

however, be able to execute all your OS programs directly in CMS. There are a
number of execution-time restrictions placed on your virtual machine by VM/SP.
You cannot execute a program that uses:

• Multitasking
• More than one partition
• Teleprocessing
• ISAM macros to read or write files
• Sets the EC mode bit in the PSW

The above is only a partial list, representing those restrictions with which you might
be concerned. For a complete list of restrictions, see the VM / SP Planning Guide
and Reference.

TEXT files, in CMS, are relocatable, and can be executed simply by loading them
into virtual storage with the LOAD command and using the START command to
begin execution. For example, if you have assembled a source program named
CREATE, you have a file named CREATE TEXT. You can issue the command:

,,~load create
/",J

/
,/

/'
I

which loads the relocatable object file into storage, and then, to execute it, you can
issue the START command:

i ;r>"."'''''"'''''''\ start

'\.! .1. . Ilnoathd
e

ccarSeeaOtfea S(imstPalertProgram, as in the above example, you can load and begin execution with a single command line, using the START option of the LOAD

Defining Input and Output Files

9-22 VM/SP eMS User's Guide

command:

...--....,.

When you issue the START command or LOAD command with the START
option, control is passed to the first entry point in your program. If you have more
than one entry point and you want to begin execution at an entry point other than
the first, you can specify the alternate entry point or CSECT name on the START
command:

start create2

When you issue the LOAD command specifying the filename of a TEXT file, CMS
searches all of your accessed disks for the specified file.

If your program expects a parameter list to be passed (via register 1), you can
specify the arguments on the START command line. If you enter arguments, then
you must specify the entry point:

start * name 1

When you specify the entry point as an asterisk (*) it indicates that you want to use
the.default entry point.

You can issue the FILEDEF command to define input and output files any time
before you begin program execution. You can issue all your file definitions before

TEXT Libraries (TXTLIBS)

loading any TEXT files, or issue them during the loading process. You can find out
what file definitions are currently in effect by issuing the FILEDEF command with
no operands:

filedef

You can also use the FILEDEF operand of the QUERY command.

You may want to keep your TEXT files in text libraries, that have a filetype of
TXTLIB. Like MACLIBs, TXTLIBs have a directory and members. TXTLIBs
are created and modified by the TXTLIB command, which has functions similar to
the MACLIB command:

• The GEN function creates the TXTLIB.
• The ADD function adds members to the TXTLIB.
• The DEL function deletes members and compresses the TXTLIB.
• The MAP function lists members.

There is no REP function; you must use a DEL followed by an ADD to replace an
existing member. The CMS commands that recognize MACLIBs as special
filetypes also recognize TXTLIBs, and allow you to display, print, or punch
TXTLIB members.

The TXTLIB command reads the object files as it writes them into the library, and
creates a directory entry for each entry point or CSECT name. If you have a
TEXT file named MYPROG, which has a single routine named BEGIN, and create
the TXTLIB named TESTLIB as follows:

txtlib gen testlib myprog

TESTLIB contains no entry for the name MYPROG; you must specify the
membername BEGIN to reference this TXTLIB member.

When you want to load members of TXTLIBs into storage to execute them (just as
you execute TEXT files), you must issue the GLOBAL command to identify the
TXTLIB:

global txtlib testlib
load begin (start

When you specify more than one TXTLIB on the GLOBAL command line, the
order of search is established for the TXTLIBs. However, if the AUTO option is
in effect (it is the default), CMS searches for TEXT files before searching active
TXTLIBs.

When the TXTLIB command processes a TEXT file, it writes an LDT (loader
terminate) card at the end of the TEXT file, so that when a load request is issued
for a TXTLIB member, loading terminates at the end of the member. If you add
OS linkage editor control statements to the TEXT file (using the CMS editor)
before you issue the TXTLIB command to add the file to a TXTLIB, the control
statements are processed as follows:

Chapter 9. Developing OS programs under CMS 9-23

NAME Statement

ENTRY Statement

ALIAS Name

SETSSI Card

A NAME statement causes the TXTLIB command to create the directory entry for
the member using the specified name. Thereafter, when you want to load that
member into storage or delete it from the TXTLm you must refer to it by the name
specified on the NAME statement.

The loader does not use name cards to resolve entry points. It is important that the
name on the name card be the same as the name on the CSECT or entry card.
This will ensure that the loader will find the correct text deck and loader tables
(any external references) will be resolved with the entry point. If the names differ,

. the loader. will load the text deck based on the name card (or file name). However,
the loader tables will be set up according.to entry or CSECT cards encountered
during the load. Any external reference using the name from the name card will be
resolved as zeros. See the section "Resolving External References" for more
detailed information.

If you use an ENTRY statement, the entry point you specify is validated and
checked for a duplicate. If the entry point name is valid and there are no duplicates
in· the TEXT file, the entry name is written in the LDT card. Otherwise, an error
message is issued. When this member is loaded, execution begins at the entry point
specified. (See "Determining Program Entry Points.")

An entry is created fu the directory for the ALIAS name you specify. A maximum
of 16 alias. names can be used in a single text deck. You may load the single
member and execute it by referring to the alias name, but you cannot use the alias
name as the object of V -type address constant (VCON), because the address of
the member cannot be resolved. '

Information you· specify on the SETSSI card is written in bytes 26 through 33 of
the LDT card.

All other OS . link. age. editor control .. state. mentsare ignored by the TXTLIB .. .
command and written into the TXTLm member. When you attempt to load the
member, the eMS loader flags these cards as invalid.

Resolving External References

9-24 VM/SP eMS User's Guide

The CMSloader loads files into storage as a result of a LOAD or INCLUDE
command. When a file is loaded, the loader che.cks for unresolved references; if
there 'are any, theloadersear~hesyour dislcsforTEXT files with filenames that
match theextern3I entry name. When it finds a match, it loads the TEXT file into
storage. If a TEXT·file IS not found, the loader searches any available TXTLIBs
for me!Ilbers that match; if a match·is found, itlo~ds·the member.

If there are still unresolved references, for example, if you load a program that calls
routines PRINT and ANALYZE but the loader cannot locate them, you receive the
message:

THE FOLLOWING. NAMES ARE UNDEFINED:
PRINT
ANALYZE

You can issue the INCLUDE command to load additional TEXT files or TXTLffi
members into storage so the loader can resolve any remaining references. For
example, if you did not identify the TXTLIB that contains the routines you want to
call, you may enter the GLOBAL command followed by the INCLUDE command:

global txtlib newlib
include print analyze (start

A failure to resolve external references might occur if you have TEXT files with
filenames that are different from either the CSECT names or the entry names; You
must explicitly issue LOAD and INCLUDE commands for these files.

At execution time, if there are still any unresolved references, their addresses are
all set to 0 by the loader, so any attempt to address them in a program may result in
a program check.

The LOAD and INCLUDE Commands

Controlling the eMS Loader

The INCLUDE command has the same format and option list (with one exception)
as the LOAD command. The main difference is that when you issue the
INCLUDE command the loader tables are not reset; if you issue two LOAD
commands in succession, the second LOAD command cancels the effect of the
first, and the pointers to the files loaded are lost.

Conversely, the INCLUDE command, which you must issue when you want to
load additional files into storage, should not be used unless you have just issued a
LOAD command. You may specify as many INCLUDE commands as necessary
following a LOAD command to load files into storage.

The LOAD and INCLUDE commands allow you to specify a number of options.
You can:

• Change the entry point to which control is to be passed when execution begins
(RESET option).

• Specify the location in virtual storage at which you want the files to be loaded
(ORIGIN option).

• Control how CMS resolves references and handles duplicate CSECT names
(AUTO, LIB, and DUP options).

• Clear storage to binary zeros before loading files (CLEAR option). Otherwise
CMS does not clear user storage.

When the LOAD and INCLUDE commands execute, they produce a load map,
indicating the entry points loaded and their virtual storage locations. You may find
this load map useful in debugging your programs. If you do not specify the
NOMAP option, the load map is written onto your A-disk, in a file named LOAD
MAP AS. Each time you issue the LOAD command, the old file LOAD MAP is
erased and the new load map replaces it. If you do not want to produce a load
map, specify the NOMAP option.

You can find details about these, and other options under the discussion of the
LOAD command in VM/SP CMS Command and Macro Reference.

Chapter 9. Developing as programs under CMS 9-25

Loader Control Statements

In addition to the options provided with the LOAD and INCLUDE commands that
assist you in controlling the execution of TEXT files, you can also use loader
control statements. These can be inserted in TEXT files, using the CMS editor.
The loader control statements allow you to:

• Set the location counter to specify the address at which the next TEXT file is
to be loaded (SLC statement).

• Modify instructions and constants in a TEXT file, and change the length of the
TEXT file to accommodate modifications (Replace and Include Control
Section statements).

• Change the entry point (ENTRY statement).

• Nullify an external reference so that it does not receive control when it is
called, and you do not receive an error message when it is encountered
(LIBRARY statement).

These statements are also described under the LOAD command in VM / SP CMS
Command and Macro Reference.

Determining Program Entry Points

9-26 VM/SP eMS User's Guide

When you load a single TEXT file or a TXTLIB member into storage for
execution, the default entry point is the first CSECT name in the object file loaded.
You can specify a different entry point at which to start execution either on the
LOAD (or INCLUDE) command line with the RESET option:

load myprog (reset beta

where BETA is the alternate entry point of your program, or you can specify the
entry point on the START command line:

start beta

When you load multiple TEXT files (either explicitly or implicitly, by allowing the
loader to resolve external references), you also have the option of specifying the
entry point.on the LOAD, INCLUDE, or START command lines.

If you do not specifically name an entry point, the loader determines the entry
point for you, according to the following hierarchy:

1. An entry point specified on the START command

2. The last entry specified with the RESET option on a LOAD or INCLUDE
command

3. The name on the last ENTRY statement that was read

4. The name on the last LDT statement that contained an entry name that was
read

5. The name on the first assembler- or compiler-produced END statement that
was read

Creating Program Modules

Using EXEC Procedures

6. The first byte of the first control section loaded

For example, if you load a series of TEXT files that contain no control statements,
and do not specify an entry point on the LOAD, INCLUDE, or START
commands, execution begins with the first file that you loaded. If you want to
control the execution of program subroutines, you should be aware of this
hierarchy when you load programs or when you place them in TXTLffis.

An area of particular concern is when you issue a dynamic load (with the OS
LINK, LOAD, or XCTL macros) from a program, and you call members of CMS
TXTLIBs. The CMS loader determines the entry point of the called program and
returns the entry point to your program. If a TXTLIB member that you load has a
VCON to another TXTLIB member, the LDT card from the second member may
be the last LDT card read by the loader. If this LDT card specifies the name of the
second member, then CMS may return that entry point address to your program,
rather than the address of the first member.

When your programs are debugged and tested, you can use the LOAD and
INCLUDE commands, in conjunction with the GENMOD command, to create
program modules. A module is a nonrelocatable file whose external references
have been resolved. In CMS, these files must have a filetype of MODULE.

To create a program module, load the TEXT files or TXTLIB members into
storage and issue the GENMOD command:

load create analyze print
genmod process

In this example, PROCESS is the filename you are assigning the module; it will
have a filetype of MODULE. You could use any name; if you use the name of an
existing MODULE file, the old one is replaced.

To execute the program composed of the source files CREATE, ANALYZE, and
PRINT, enter:

process

If PROCESS requires input and/or output files, you will have to define these files
before PROCESS can execute properly; if PROCESS expects arguments passed to
it, you can enter them following the MODULE name; for example:

process test1

For more infoFmation on creating program modules, see Chapter 8, "Programming
for The CMS Environment."

During your program development and testing cycle, you may want to create
EXEC procedures to contain sequences of CMS commands that you execute
frequently. For example, if you need a number of MACLIBs, TXTLIBs, and file
definitions to execute a particular program, you might have an EXEC procedure as
follows:

Chapter 9. Developing OS programs under CMS 9-27

&CONTROL ERROR TIME
&ERROR &EXIT &RETCODE
GLOBAL MACLIB TESTLIB OSMACRO OSMACR01
ASSEMBLE TESTA
PRINT TESTA LISTING
GLOBAL TXTLIB TESTLIB PROGLIB
ACCESS 200 E
,&BEGSTACK
OS.TEST3.STREAM.BETA
&END
FILEDEF INDD1 E DSN ?
FILEDEFINDD2 READER
FILEDEF OUTFILE DISK TEST DATA A1
LOAD T~STA (START
&IF &RETCODE = 100 &GOTO -RET100
&IF &RETCODE = 200 &GOTO-RET200
&EXIT &RETCODE
-RET100 &CONTINUE

-RET200 &CONTINUE

The &CONTROL and &ERROR control statements in the EXEC procedure ensure
that if an error occurs during any part of the EXEC, the remainder of the EXEC
does not execute, and the execution summary of the EXEC indicates the command
that caused the error;

Note: For the FILEDEF command entered with the DSN? operand, you
must stack the response before issuing the FILEDEF command.

In this example, since the OS data set name has more than eight characters, you
must use the &BEGST ACK control statement to stack it. If you use the &STACK
control statement, the EXEC processor truncates all words to eight characters.

When your program is finished executing, the EXEC special variable &RETCODE
indicates the contents of general register 15 at the time the program exited. You
can use this value to perform additional steps in your EXEC procedure. Additional
steps are indicated in the preceding example by ellipses.

For detailed information' on creating EXEC procedures, see Appendix B, "The
CMS EXEC Processor" on page B-1.

Executing Members of OS Module Libraries or eMS LOADLIBS

9-28 VM/SP eMS User's Guide

The OS relocating loader allows the user to load a member of a CMS LOADLm or
an as module library on an OS formatted disk. The OS LINK, LOAD, ATTACH,
and XCTL macros are supported. In addition, the OSRUN command (which
generates a LINK SVC) is supported to provide for loading and executing members
directly from the console.

For macros, the libraries specified in the LOADLIB global list are searched. If the
requested member is not found, eMS looks for a TEXT file by that name; then, if
still not found, the TXTLIBs specified in the TXTLIB global list are searched for
the member name.

For the OSRUN command, the libraries specified in the LOADLm global list are
searched. If the member is not found and the user has a $SYSLm LOADLIB file,
it is searched forthe member name. (TEXT and TEXTLms are not considered by
OSRUN.)

A FILEDEF command must define any OS module libraries from which members
are to be loaded. TheDDNAME specified must "be $SYSLIB. The filename can
be any name, but it must correspond to the name stated in the GLOBAL
statement; the filetype must be LOADLm. To define more than one library with
the same DDNAME, use the CONCAT option of the FILEDEF command. Any
library to be searched (either CMS LOADLm or OS module library) must be
specified in the GLOBAL LOADLIB statement. . The data set with the largest
block size should be specified first (both in the FILEDEF and in the GLOBAL
list). CMS files do not require a file definition, but if used, the file with the largest
block size should be specified first. The GLOBAL list determines the order in
which the libraries are searched.

The LKEDcommand is used to create a eMS LOADLm. For example:

LKED TESTFILE

takes a CMS TEXT file with the filename of TESTFILE and creates a file named
TESTFILELOADLm.For more information on input to the LKED command
refer to the section, "Specifying Input to the LKED command."

The LOADLm the "LKED TESTFILE example creates is an OS simulated PDS
named TESTFILE LOADLm and contains one member named TESTFILE. To
execute TESTFILE using the OSRUN command, the GLOBAL command must be
used. For example:

GLOBAL LOADLIB TESTFILE

The OSRUN command causes the TESTFILE member of the TESTFILE loadlib to
be loaded, relocated, and executed:

OSRUN TESTFILE

If the module to be executed resides in an OS module library on an OS formatted
disk, the disk must be accessed and the library must be defined (via the FILEDEF
command) to make it known to eMS. For example, if SYSl.TESTLm is a library
on an OS disk and contains a member called TESTl, the following would be
r~quired to execute TEST 1 :

ACCESS 250 B (where 250 is the address of the OS disk)
FILEDEF$SYSLIB DISK OSLIB LOADLIB S"DSN SYS1 TESTLIB

(DSORG PO RECFM U BLOCK 7294
GLOBAL LOADLIB OSLIB
OSRUN TEST1

The LOADLm files on OS disks can be concatenated with each other and with
CMS LOADLm files by coding the FILEDEF command with the CONCAT
option. For example, two OS files and a CMS LOADLIB are searched for TEXT
with the following commands:

Chapter 9. Developing OS programs under eMS 9-29

ACCESS 250 B (if 250 is the address of the OS disk)
FILEDEF $SYSLIB DISK OSLIB LOADLIB DSN SYS1 LIB1

(DSORG PO RECFM U BLOCK 7294)
FILEDEF $SYSLIB DISK MYLIB LOADLIB B DSN SYS1 LIB2 (CONCAT)
GLOBAL LOADLIB OSLIB MYLIB CMSLIB
OSRUN TEST

Note: The first FILEDEF command for $SYSLIB must describe the first
library filename in the GLOBAL list. Its attribute will be used when the
libraries are searched. It is advisable not to code the CONCAT option on
the first FILEDEF command so that it clears all previous FILEDEFs for
that ddname.

The LOADLm command provides the utility necessary to maintain the CMS
LOADLIBs. The following functions are provided:

COpy Copy members from one LOADLIB to another
Merge complete LOADLIBs
Copy with SELECT or EXCLUDE

COMPRESS Compress a CMS LOADLIB

LIST LIST members of a CMSLOADLIB

For more detailed information on the LKED, GLOBAL, OSRUN, and LOADLm
commands, refer to the VM / SP CMS Command and Macro Reference.

Specifying Input to the LKED Command

9-30 VM/SP eMS User's Guide

Primary LKED input is a data set known to the linkage editor as SYSLIN, which
can be described in the FNAME operand of the LKED command. The filetype of
the input file named in the command line must be TEXT. Optionally, you can
override the FNAME operand by issuing a FILEDEF that defines SYSLIN as the
ddname of an alternate primary input source. If your alternate input is a CMS file,
the choice of filetype is unrestricted. The contents of the SYSLIN dataset may be:

1. Object text such as assembler or compiler output
2. Linkage editor control statements
3. A combination of object text and control statements.

Linkage editor control statements can be inserted before, between, and after object
modules and other control statements. Editing procedures can be used to construct
files to meet your requirements. Linkage editor INCLUDE statements may be
used to designate explicitly the following files or file members as secondary linkage
editor input:

1. eMS TEXT files
2. eMS TEXTLIB files
3. CMS LOADLIB files
4. Members of OS object libraries
5. Members of OS load libraries

A FILEDEF must be issued before the LKEDcommand to define a unique
ddname for each file to be included as secondary linkage editor input. An
INCLUDE statement in the SYSLIN dataset must specify the ddname assigned to
the file by your FILEDEF. For library files, the statement must also specify all

members of the library that are to be included as input. The use of all FILEDEF
commands and INCLUDE statements to identify input files is shown in the
following examples.

FILEDEF LIBDEF DISK MYLIB TXTLIB B
FILEDEF TXTDEF DISK MYFILE TEXT C

SYSLIN input:

INCLUDE LIBDEF(CSECT1,CSECT2)
INCLUDE TXTDEF

INCLUDE statements must begin in column 2. The applicable statement formats
are described in the OS/VS Linkage Editor and Loader.

Automatic library search is available for either CMS or OS type library members if
the FILEDEF for the dataset to be searched specifies SYSLIB as the ddname.
Additional libraries can be selected for automatic search by placing linkage editor
LIBRARY statements in your SYSLIN input file. Each library statement must
contain the associated ddname and a list of members within the library to be
included in the search. A FILEDEF must be issued before the LKED command to
assign a unique ddname to each dataset to be searched. The library search
conducted during a single linkage editor execution is limited to either object-type or
load-type modules and may not combine both types. The CONCAT option of the
FILEDEF command is not valid for LKED input datasets. To expand the use of
the automatic SYSLIB search, the user may combine the menbers of several CMS
·libraries into a single composite library. The automatic search facility applies to
CMS TXTLIBs and LOADLIBs and to OS object libraries and LOAD libraries.
The following example shows FILEDEF commands and SYSLIN input for an
automatic library search.

CMS commands:

FILEDEF SYSLIB DISK SEARCH1 TXTLIB B
FILEDEF LIBDEFA DISK SEARCH2 TXTLIB c
FILEDEF LIBDEF DISK OS TEXT LIBRARY D DSN OBJMODS

SYSLIN input:

LIBRARY LIBDEFA(CSECT1,CSECT2)
LIBRARY LIBDEFB(MEMBER1,MEMBER2)

LIBRARY statements must begin in column 2. The GLOBAL command is not
needed to identify linkage editor input libraries. For LOADLIB input to the
linkage editor, the RECFM U option·of the FILEDEF command must be specified.

Chapter 9. Developing as programs under CMS 9-31

9-32 VM/SP eMS User's Guide

Chapter 10. Developing VSE Programs Under CMS

A Word About Terminology

You can use CMS to create, compile, execute and debug VSE programs written in
assembler, COBOL, PL/I or RPG-II programming languages. CMS simulates
many functions of the Disk Operating System VSE so that you can use the
interactive facilities of VM/SP to develop your programs, and then execute them in
a VSE virtual machine.

This section tells you how to use the CMS /DOS environment. It describes the
CMS commands you can use to manipulate DOS disks and DOS file~ and
CMS/DOS commands you can use to simulate the functions of VSE:

• The CMS/DOS environment
• Using DOS files on DOS disks
• Using the ASSGN command
• Using the DLBL command
• Using DOS libraries in CMS/DOS
• Using macro libraries
• VSE assembler language macros supported
• Assembling source programs
• Link-editing programs in CMS/DOS
• Executing programs in CMS/DOS

For a practice terminal session using the commands and techniques presented in
this section, see Appendix F, "Sample Terminal Sessions."

CMS/DOS is neither CMS nor is it DOS; it is a composite, and its vocabulary
contains both CMS and VSE terms. CMS/DOS performs many of the same
functions as DOS, but where, under VSE, a function is initiated by a control card,
in CMS it is initiated by a command. Many CMS/DOS commands, therefore, have
the same names as the VSE control statement that performs the same function. In
those cases where the control statement you would use in VSE and the command
you use in CMS are different, the differences are explained. For the most part,
whenever a term that is familiar to you as a VSE term is used, it has the same
meaning to CMS/DOS, unless otherwise indicated.

CMS/DOS support in VM/SP is based on the VSE program product. The term
DOS, however, continues to be used in a general sense and, in the discussion that
follows, refers to the VSE program product.

The eMS/DOS Environment

After you have loaded CMS into your virtual machine you can enter the
CMS/DOS environment by issuing:

set dos on

If you want to access a DOS system residence volume during your CMS/DOS
terminal session, you should link to and access the disk that contains the DOS
SYSRES before you issue the SET command. For example, if you share the system
residence volume with other users and it is in your directory at virtual address 390,
you would issue the command:

access 390 g

Chapter 10. Developing VSE Programs Under CMS 10-1

10-2 VM/SP eMS User's Guide

and then issue the SET command as follows:

set dos on g

to indicate that the SYSRES is located on your G-disk. If you are going to use the
CMS/DOS librarian facilities to access any of the libraries on the system residence
volume, you must enter the CMS/DOS environment this way.

If you are using CMS exclusively for DOS applications, you could put the ACCESS
and SET DOS ON commands in your PROFILE EXEC.

If you are going to use access method services functions in CMS/DOS, or execute
functions that read or write VSAM data sets, you must use the VSAM option of
the SET DOS ON command:

set dos on g (vsam

When you are using CMS/DOS, you can use your virtual machine just as you
would if you were in the CMS environment; but you cannot execute any CMS
commands or program modules that load and/or use OS macros. The SCRIPT
command, for example, uses OS macros, and is therefore invalid in the CMS/DOS
environment.

You have, however, in addition to the CP and CMS commands available, a series
of commands that simulate VSE functions. Except for the DLBL and DOSLIB
commands, these commands or operands should only be issued in the CMS/DOS
environment.

The CMS/DOS commands are summarized in Figure 10-1 on page 10-3.

Command Function

ASSGN Relates system and programmer logical units to physical devices.

DLBL Relates a program DDname (filename) to a real disk file so you can perform
input/ output operations on it.

DOSLIB Lists or deletes phases from a CMS/DOS phase library, or compresses the
library.

DOSLKED Link-edits CMS TEXT files or DOS phases from system or private relocatable
libraries.

DSERV Displays the directories of DOS libraries.

DOSPLI An EXEC procedure that invokes the DOS/VS PL/I compiler.

ESERV An EXEC procedure that invokes the ESERV utility functions on edited
assembler language macros.

FCOBOL An EXEC procedure that invokes the DOS/VS COBOL compiler.

FETCH Loads executable phases from a DOSLIB or DOS library into storage for
execution, and optionally starts execution.

GLOBAL When you want DOSLIBs searched for executable phases or macro libraries
searched for macro definitions, you must identify them with the GLOBAL
command.

LISTIO Displays the current assignments of system and programmer logical units, and
optionally creates an EXEC file to contain the information.

OPTION Sets or changes the options in effect for the DOS/VS COBOL compiler.

QUERY Use QUERY command operands to list current DLBL definitions (QUERY
DLBL), to determine whether or not you are in the CMS/DOS environment
(QUERY DOS), the setting of the UPSI byte (QUERY UPSI), the DOSLffis
identified by GLOBAL commands (QUERY DOSLIB or or QUERY
LIBRARY), the current number of lines per page (QUERY DOSLNCNT),
which options are in effect for the COBOL compiler (QUERY OPTION), or
to find out whether you have set a virtual partition size (QUERY DOSPART).

PSERV Creates CMS files with a filetype of PROC from the VSE procedure library, or
displays, prints or punches procedures.

RSERV Copies a relocatable module from a DOS library and places it in a CMS file
with a filetype of TEXT, or displays, prints, or punches modules.

SET The SET command has operands that allow you to enter or leave the
CMS/DOS environment (SET DOS ON or SET DOS OFF) to set the number
of SYSLST lines per page (SET DOSLNCNT), to set the UPSI byte
(SETUPSI), and to set a virtual partition size (SET DOSPART).

SSERV Creates CMS COpy files from books on VSE source statement libraries.

Figure 10-1. CMS/DOS Commands and CMS Commands with Special Operands

Chapter 10. Developing VSE Programs Under CMS 10-3

DL/I in the eMS/DOS Environment

Batch DL/I programs can be written and tested in the CMS/DOS environment.

This includes programs written in assembler, COBOL, and PL/I languages. Not all
functions of COBOL and PL/I are supported. For a description of what is
supported, see the documentation on the appropriate program product. Data base
description generation and program specification block generation can also be
executed. However, the application control block generation must be submitted to
a DOS virtual machine for execution. The data base recovery and reorganization
utilities must also be executed in a DOS virtual machine. This support provides the
ability to:

• Interactively code DL/I control blocks and application programs that contain
imbedded DL/I calls.

• Store and maintain macros used to generate DL/I control blocks, and
programs created under CMS, in the CMS library. Production libraries are
thus isolated from the test environment.

• Modify and compile programs using the CMS/DOS text manipulation and
EXEC facilities.

• Link-edit and execute batch DL/I programs either interactively or in
CMSBATCH. Online DL/I application programs requiring access to
CICS/VS must be submitted to a DOS virtual machine for link-editing,
cataloging, and execution.

The following restrictions apply:

• All the existing guidelines and restrictions that apply to VSAM data set
creation, maintenance, and application program use apply to DL/I data sets.

• The CMS/DOS restriction on writing·to sequential files applies to SHSAM and
HSAM.

• To assemble a DBD or PSB under CMS/DOS, you must first copy the
DBDGEN and PSBGEN macros from the DOS source statement library to a
CMSMACLIB.

I
For more information about using DL/I in the CMS/DOS environment, see DL/ I
DOS/VS Data Base Administration.

Using DOS Files on DOS Disks

10-4 VM/SP eMS User's Guide

You can have DOS disks attached to your virtual machine by a directory entry or
you can link to a DOS disk with the LINK command. You can use the ACCESS
command to assign a mode letter to the disk:

access 155 b

and the RELEASE command to release it:

release b

Reading DOS Files

Except for VSAM disks, you cannot write on DOS disks, or update DOS files on
them. You can, however, execute programs and CMS/DOS commands that read
from these files, and you can use the LISTDS command to display the fileids of
files on a DOS disk; for example:

listds b

You can also verify the existence of a particular file. For example, if the file-id is
NEW.TEST.DATA you can enter:

listds new.test.data.b
-- or --

listds new test data b

If the file-id of the DOS file you want to verify contains embedded blanks, for
example NEW.TEST DATA, then you have to enter the LISTDS commands with a
question mark:

listds ? b

CMS responds:

ENTER DATA SET NAME:

and you can enter the exact file-id:

new.test data

If the data set exists, you receive a response:

FM DATA SET NAME
B NEW.TEST DATA

Under CMS/DOS, you can execute programs that read DOS sequential (SAM)
files; you can also execute programs that read and write VSAM files. You cannot,
however, execute programs to read direct (DAM) or indexed sequential (ISAM)
DOS files.

Complete information on using CMS to access and manipulate VSAM files is
described in Chapter 11, "Using Access Method Services and VSAM Under CMS
and CMS/DOS" on page 11-1. The discussion below lists the restrictions placed
on reading SAM files.

Restrictions on Reading DOS Disk Flles in eMS

CMS cannot read DOS files that:

• Have the input security indicator on.

• Contain more than 16 user labels and/or data extents. (If the file has user
labels, they occupy the first extent; therefore the file must contain no more
than 15 data extents.)

• Are multivolume files. Multivolume files are read as single-volume files. End
of volume is treated as end of file. There is no end-of-volume switching.

• Have user labels. User labels in user-labeled files are bypassed.

Chapter 10. Developing VSE Programs Under CMS 10-5

CMS does not support duplicate volume labels; you cannot access more than one
volume with the same six-character label while you are using CMS/DOS.

Creating CMS Files from DOS Libraries

You can create CMS files from existing DOS files on DOS disks. CMS simulates
the DOS librarian functions DSERV, RSERV, SSERV, ESERV, and PSERV with
commands of the same names; you can use these CMS/DOS commands to create
CMS files from relocatable, source statement, or procedure libraries located either
on the DOS system residence volume or in private libraries. The functions are fully
described later in this section.

Copying DOS Disk and Tape Data Files

If you want to create CMS files from DOS files that are not cataloged in libraries or
from DOS files on tape, you can use the MOVEFILE command. The MOVEFILE
command allows you to copy a file from one device to another device of the same
or adifferent type. Before issuing the MOVEFILE command, the input and the
output files must be described to CMS with the FILEDEF command.

The MOVEFILE and FILEDEF commands are described and examples are given
of how to use them in Chapter 9, "Developing OS programs under CMS" on page
9-1. . The· procedures are the same for copying DOS files as for OS data sets. You
must, however, keep the following in mind:

• Because DOS files on DOS disks do not contain BLKSIZE, RECFM, or
LRECL options, these options must be specified via the FILEDEF command;
otherwise, defaults of BLOCKSIZE=32760 and RECFM= U are assigned.
LRECL is not used for RECFM= U files.

• If a DOS file-id does not follow OS naming conventions (that is, one- to
eight-byte qualifiers with each qualifier separated by a period; up to 44
characters including periods), you must use the DSN? operand of FILEDEF
and the? operand of LISTDS to enter the DOS file-id.

Copying Modules from VSE Library or SYSIN Tapes

10-6 VM/SP eMS User's Guide

You can create individual CMS files for VSE modules from a VSE library
distribution tape or VSE SYSIN tape. Use the VMFDOS command. The
VMFDOS command can create a CMS file for each VSE module that exists, and
the CMS filename corresponds to the VSE module name. You can restore
individual modules, groups of modules, or the entire module set.

For VS~ library distribution tapes, the VMFDOS command restores modules from
either system or private (relocatable and/or source statement) libraries. The
created CMS files have a filetype of 'TEXT' if they are from a relocatable library.
They have a filetype of "MACRO" if they are from a source statement library.

For VSE SYSIN tapes, modules containing a period as the second character (for
example, "A.") of a VSE "CATALx" control statement have a filetype of
'MACRO'. All other files have a filetype of "TEXT."

The VMFDOS command is described in the VM/SP Installation Guide.

Reading in Real Card Decks

Using Tapes in CMS/DOS

If you have DOS files or source programs on cards, you can create CMS files
directly by having these cards read into the real system card reader. You direct the
cards to your virtual machine by punching a CP ID card in the following format.
For example, if your userid is HARMONY, then enter:

1D HARMONY

and placing this card in front of your card deck. When the cards appear in your
virtual card reader, you can read them onto your CMS A-disk with the
READCARD command:

readcard dataproc assemble

You can use the editor to remove any DOS control cards that may be included in
the deck.

See Chapter 6, "Using Real Printers, Punches, Readers, and Tapes" for a
description of CMS tape label processing for CMS/DOS tape files. The support
for tape labels is only for files defined by a DTFMT macro. If you do not use this
macro, CMS bypasses mM standard labels on input tapes and writes a tape mark
over any existing labels on an output tape. The CMS LABELDEF command is
equivalent in CMS/DOS to the VSE TLBL control statement when standard tape
label processing is used.

Using the ASSGN Command

The ASSGN and DLBL commands perform the same functions for CMS/DOS as
the ASSGN and DLBL control statements in VSE. You use the ASSGN command
to designate an I/O device for a system or programmer logical unit (SYSxxx) and,
if the device is a disk device, you can use the DLBL command to establish a real
file identification for a symbolic filename in a program. The DLBL command is
described under "Using the DLBL Command."

In addition to using the ASSGN command to relate real I/O devices with symbolic
units, you must use it in CMS/DOS to:

• Assign SYSIN or SYSIPT for the input source file for a language compiler
when you use the DOSPLI or FCOBOL commands.

• Identify the disk, by mode letter, on which a private core image, relocatable, or
source statement library resides.

• Assign SYSIN or SYSIPT to the CMS disk on which an ESERV file, containing
control statements for the ESERV program, resides.

When you enter the ASSGN command, you must supply the logical unit and the
device; for example:

assgn sys100 printer

assigns the logical unit SYS 1 00 to the printer. When you want to make an
assignment to a disk device, you must specify the mode letter at which the disk is
accessed. The command:

Chapter 10. Developing VSE Programs Under CMS 10-7

SYSIPf, SYSRDR, SYSIN:

SYSLST:

SYSLOG:

SYSPCH:

SYSCLB,SYSRLB,SYSSLB:

assgn sys010 b

assigns the logical unit SYSO 1 0 to your B-disk.

The system logical units you can assign and the valid device types you can assign to
them in CMS/DOS follow.

These units can be assigned to disk (mode), TAPE, or READER. If you make an
assignment to SYSIN, both SYSRDR and SYSIPT are also assigned the same
device. Assignment to DOS FB-512 disks is not supported.

The system logical unit for listings can be assigned to disk (mode), PRINTER, or
TAPE.

Terminal or operator output or messages cart be assigned to PRINTER or
TERMINAL. CMS/DOS always assigns SYSLOG to TERMINAL by default, so
you never have to make this assignment except when you want to alter it.

Punched output, for example text decks, can be assigned to PUNCH, disk (mode),
or TAPE.

The system logical units SYSCLB, SYSRLB, and SYSSLB can be assigned to
private core image, relocatable, and source statement libraries, respectively. The
only valid assignments for these units is to disk (mode). If you want to reference
private libraries with the DOSLKED, DSERV, ESERV, FETCH, SSERV, or
RSERV commands, you must assign SYSCLB, SYSRLB, or SYSSLB to the disks
on which the libraries reside.

ManipUlating Device Assignments

10-8 VM/SP eMS User's Guide

You can assign programmer logical units SYSOOO through SYS241 with the
ASSIGN command. Besides assigning I/O devices, the ASSGN command can also
negate a previous assignment:

assgn syspch ua

or specify that, for a given device, no real I/O operation is to be performed during
the execution of a program:

assgn sys009 ign

When you release a disk from your virtual machine, any assignments made to that
disk are unassigned.

You can find out the current assignments for system and programmer logical units
with the LISTIO command, which lists all the system or programmer logical units,
even those that are unassigned:

listio

Virtual Machine A.ssignments

Using the DLBL Command

To list only currently assigned units, enter:

listio a

To find out the current assignment of one specific unit, for example SYS 1 00, enter:

listio sys100

With the EXEC option of the LISTIO command, you can create a disk file
containing the list of assignments. The $LISTIO EXEC that is created contains
two EXEC numeric variables, &1 and &2, for each unit listed. For example, if you
entered the command:

listio sys081 (exec

then the file $LISTIO EXEC may contain the record:

&1 &2 SYS081 PRINTER

When you use the STAT option, LISTIO lists, for disk devices, whether the disk is
read-only or read/write; for example:

listio sys100
SYS100 B R/W

indicates that SYS100 is assigned to the B-disk, which is a read/write disk.

You can cancel all current assignments by leaving the CMS/DOS environment and
then re-entering it:

set dos off
set dos on

When you assign a physical device type to a system or programmer logical unit,
CMS relates the device to your virtual machine configuration; you receive an error
message if you try to assign a logical unit to a device not in your configuration. For
example, if you are using the ASSGN command to assign a logical unit to a disk
file, you must specify the access mode letter of the disk. If the disk is not accessed,
the ASSGN command fails. For another example, if you issue:

assgn syspch punch

the punch specified is your own virtual machine card punch. The actual destination
of punched output then depends on the spooling characteristics of the punch; if it is
spooled to another user or to *, then no real cards are punched, but virtual card
images are placed in the virtual reader of the destination userid, which may be
another virtual machine or your own.

CMS supports only one reader, one punch, and one printer; you cannot make any
assignments for multiple output devices in CMS/DOS. When you make an
assignment for a logical unit that has already been assigned, it replaces the current
assignment.

Use the DLBL command to supply CMS/DOS with specific file identification
information for a disk file that is going to be used for input or output. For any

Chapter 10. Developing VSE Programs Under CMS 10-9

Entering File Identifications

10-tO VM/SP eMS User's Guide

DLBL command you issue, you must previously have issued an ASSGN command
for the disk, specifying a system or programmer logical unit. The basic relationship
is:

assgn SYSxxx mode
dlbl filename mode DSN ? (SYSxxx

Both the SYSxxx and the mode values must match on the ASSGN and DLBL
commands; the disk on which the file resides must be accessed at mode.

The filename on the DLBL command line, called a ddname in eMS/DOS,
corresponds to the symbolic name for a file in a program. If you want to reference
a private DOS library, you must use one of the following ddnames:

System Logical Unit
SYSCLB
SYSRLB
SYSSLB

Fllename
IJSYSCL
IJSYSRL
IJSYSSL

When you issue the DLBL command you must identify the file, by file-id (for a
VSE file) or by file identifier (for a CMS file). The keywords DSN and CMS
indicate whether it is a VSE file or a CMS file, respectively.

If the file is a VSE file residing on a DOS disk, you can enter the DLBL command
in one of three ways. For example, for a file named TEST.FILE.lNPUT you may
enter either:

assgn sys101 d
dlbl infile d dsn test. file. input (sys101

-- or --

dlbl infile d dsn test file input (sys101

-- or --

assgn sys101 d
dlbl infile d dsn ? (sys101
ENTER DATA SET NAME:
test. file. input

For any VSE file with a file-id that contains embedded blanks, you must use the
"DSN ?" form.

When you issue. a DLBL command for a CMS file, you enter the filename and
filetype following the keyword CMS:

assgn sys102 a
dlbl outfile a ems new output (sys102

In this example, if SYSI02 is defined as an output file for a program, the output is
written to your CMS A-disk in a file named NEW OUTPUT.

You can, for convenience, use a CMS default file identifier. If you enter:

dlbl outfile a ems (sys102

then the output file type defaults to that of the ddname and the filename to FILE.
So, this output file is named FILE OUTFILE.

Clearing and Displaying File Definitions

You can clear a DLBL definition for a file by using the CLEAR operand of the
DLBL command:

dlbl outfile clear

To clear all existing definitions, except those entered with the PERM option, you
can enter:

dlbl * clear

This command is issued by the assembler and the language processors when they
complete execution. Definitions entered with the PERM option must be
individually cleared.

Whenever you use the HX Immediate command to halt the execution of a program,
the DLBL definitions in effect are cleared, including those entered with the PERM
option.

You can find out what definitions are currently in effect by issuing the DLBL
command with no operands:

dlbl

or, you can use the QUERY command with the DLBL operand.

Using DOS Libraries in eMS/DOS

CMS/DOS provides you with the capability of using various types of files from
DOS system or private libraries. You can copy, punch, display at the terminal, or
print:

• Books from system or private source statement libraries using the SSERV
command

Relocatable modules from system or private relocatable libraries using the
RSERV command

• Procedures from the system procedure library using the PSERV command

You can also:

• Copy and de-edit macros from system and private E sublibraries using the
ESERV command

• Access the directories of system or private libraries using the DSER V
command

• Link-edit relocatable modules from system or private relocatable libraries with
the DOSLKED command

• Read core image phases from system or private core image libraries into
storage for execution using the FETCH command

Chapter 10. Developing VSE Programs Under CMS 10-11

The SSERV Command

The RSERV Command

10-12 VM/SP eMS User's Guide

If you have cataloged source programs or copy files on the system source statement
library and you want to use CMS to modify and test them, you can copy them into
CMS files using the SSERV command. For example, suppose you want to copy a
book named PROCESS from the A sublibrary on the system residence volume.
The DOS system residence is in your virtual machine configuration at virtual
address 350, and you have accessed it as your F-disk. First, to indicate to
CMS/DOS that the system residence is on your F-disk, you enter:

set dos on f

then you can enter the SSERV command, specifying the sublibrary identification
and the book name:

sserv a process

This creates, from the A sublibrary, a file named PROCESS COPY and places it on
your A-disk. If the book contained assembler language source statements you
would want the filetype to be ASSEMBLE, so you may enter:

sserv a process assemble

If you want to copy a book from a private source statement library, you must first
use the ASSGN and DLBL commands to make the library known to CMS/DOS.
For example, to obtain a copy file from a private library on a DOS disk accessed as
your D-disk, enter:

assgn sysslb d
dlbl ijsyssl d dsn ? (sysslb
ENTER DATA SET NAME:
program. test library

Now, when you enter the SSERV command:

sserv t setup copy

the book named SETUP in the T sublibrary of PROGRAM. TEST LmRARY is
copied into a CMS file named SETUP COpy. If SETUP is not found in the
private library, then CMS searches the system library, if it is available.

In CMS/DOS, to manipulate relocatable modules that have been cataloged either
on the system or a private relocatable library you must first copy them into CMS
files with the RSERV command. You can link-edit modules directly from DOS
relocatable libraries, but if you want to add or modify linkage editor control
statements for a module; you must place the control statements in a CMS file.

If you are copying a relocatable module from the system relocatable library, then
you should make sure that you have indicated the system residence disk when you
entered the CMS/DOS environment:

set dos on f

then you can issue the RSERV command specifying the name of the relocatable
module you want to copy:

rserv rtna

The PSERV Command

The ESERV Command

The execution of this command results in the creation of a CMS file named RTNA
TEXT on your A-disk.

If you want to copy a relocatable module from a private relocatable library, you
must first use the ASSGN and DLBL commands to make the private library known
to CMS/DOS:

assgn sysrlb d
dlbl ijsysrl d dsn reloc.lib (sysrlb

Then, issue the RSERV command for a specific module in that library:

rserv testrtna

to create the CMS file TESTRTNA TEXT from the module named TESTRTNA.
If the module TESTRTNA is not found in RELOC.LIB, CMS searches the system
library, if it is available.

If you want to copy DOS cataloged procedures into CMS files to use, for example,
in preparing job streams for a DOS virtual machine, you can use the PSERV
command:

pserv prepjob

This command creates a CMS file on your A-disk; the file is named PREPJOB
PROC. To. copy a procedure from the procedure library you must have entered the
CMS/DOS environment specifying a disk mode for the system residence volume.

You cannot execute DOS/VS procedures directly from the CMS/DOS
environment. However, if you modify a procedure, you can punch it to a virtual
machine that is running a DOS system, and execute it there.

The CMS/DOS ESERV command is actually an EXEC procedure that calls the
VSE ESERV utility program. To use the ESERV program, you first must IPL
CMS with a CMSBAM DCSS (shared segment), then create a file with a filetype
of ESERV that contains the ESERV control statements you want to execute. For
example, if you want to write a de-edited copy of the macro DTFCD onto your
A-disk, you might create a file named DTFCD ESERV, with the record:

PUNCH E.DTFCD

As when you submit ESERV jobs in DOS column 1 must be blank.

Prior to executing the ESERV program, you must enter the CMS/DOS
environment by specifying the SET DOS ON command using a VSE system
residence volume. This is necessary because the ESER VB procedure invokes the
ESERV program directly from the VSE core image library.

Then, you must assign SYSIN to the device on which the ESERV source file
resides, usually your A-disk:

assgn sysin a

Then you can enter the ESERV command specifying the filename of the ESERV
file:

Chapter 10. Developing VSE Programs Under CMS 1.0-13

The DSERV Command

10-14 VM/SP eMS User's Guide

eserv dtfcd

No other ASSGN commands are required; the CMS/DOS ESERV EXEC makes
default assignments for SYSPCH and SYSLST to disk.

To copy and de-edit macros from a private E sublibrary, issue the ASSGN and
DLBL commands to identify the library. For example, to identify a source
statement library named TEST.MACROS on the DOS disk accessed as the C-disk,
enter:

assgn sysslb c
dlbl ijsyssl c dsn test.macros (sysslb

The SYSLST output is contained in a CMS file with the same filename as the
ESERV file and a filetype of LISTING; you must examine the LISTING file to see
if the ESERV program executed successfully. You can either edit it, or display its
contents with the TYPE command:

type dtfcd listing

The SYSPCH output is contained in a file with the same name as the ESER V file
and a filetype of MACRO. If you want to punch ESERV output to your virtual
card punch, make an assignment of SYSPCH to PUNCH.

When you use the PUNCH or DSPCHESERV control statements, CATAL.S,
END, or /* records may be inserted in the output file. When you use the
MACLIB command to add the MACRO file to a CMS macro library, these
statements are ignored.

See "Using Macro Libraries" for information on creating and manipulating CMS
macro libraries.

You can use the DSERV command to examine the contents of system or private
libraries. If you do not specify any options with it, the DSERV command creates a
disk file, named DSERV MAP, on your A-disk. You can use the PRINT or TERM
options to specify that the directory list is either to be printed on your spooled
printer or displayed at your terminal. You can also use the SORT option to create
a list in collating sequence.

In order to examine a system directory, you must have entered the CMS/DOS
environment specifying the mode letter of the DOS system residence:

set dos on f

If you want to examine the directory of a private source statement, core image, or
relocatable library you must issue the ASSGN and DLBL commands establishing
SYSSLB, SYSCLB, or SYSRLB before using the DSERV command.

For example, to display at your terminal an alphameric list of procedures cataloged
on the system procedure library, you would issue:

dserv pd (sort term

If the directory you are examining is for a core image library, you can specify a
particular phase name to ascertain the existence of the phase:

dserv cd phase $$bopen (term

To list the directory of a private source statement library, you would first issue the
ASSGN and DLBL commands:

assgn sysslb b
dlbl ijsyssl b dsn test. source (sysslb

then enter the DSERV command:

dserv sd

The CMS file, DSERV MAP A, that is created in this example contains the
directory of the private source statement library TEST.SOURCE.

Using DOS Core Image Libraries

Using Macro Libraries

CMSMACLIBs

You can load core image phases from DOS core image libraries into virtual storage
and execute them under CMS/DOS. Since CMS cannot write directly to DOS
disks, linkage editor output under CMS/DOS is placed in a special CMS file.called
a DOSLIB. When you execute the FETCH command in eMS/DOS you can load
phases from either system or private DOS core image libraries as well as from CMS
DOSLIBs. More information on using the FETCH command is contained under
"Executing Programs in CMS/DOS."

DOS macro libraries cannot be accessed directly by the VM/SP assembler. If you
want to assemble DOS programs in CMS /DOS that use DOS macro or copy files
that are on the system or a private macro library you must first create a CMS
macro library (MACLIB) containing the macros you wish to use. Since the process
of creating a CMS MAC LIB from the DOS system source statement library (E
sublibrary) can be very time-consuming, you should check with your installation's
system programmer to see if it has already been done, and to verify the filename of
the macro library, so that you can use it in CMS/DOS.

Note: The DOS, PL/I and DOS/VS COBOL compilers executing in
CMS/DOS cannot read macro or copy files from CMS MACLIBs. Macros
and copy files are obtained instead from a DOS source statement library.

If you want to extract DOS system macros to modify them for your private use, or
if you want to use macros from a private library in CMS, you must use the
procedure outlined below to create the MACLIB files.

A CMS macro library has a file type of MACLIB. You can create a MACLIB from
files with filetypes of MACRO or COPY. A MACRO file may contain macro
definitions; COpy files contain predefined source statements.

When you want to assemble a source program that uses macro or copy definitions,
you must ensure that the library containing the code is identified before you invoke
the assembler. Otherwise, the library is not searched. You identify libraries to be
searched using the GLOBAL command. For example, if you have two MACLIBs
that contain your private macros and copy files whose names are TESTMAC
MACLIB and TESTCOPY MACLIB, you would issue the command:

global maclib testmac testcopy

Chapter 10. Developing VSE Programs Under CMS 10-15

Creating a CMS MACLIB

10-16 VM/SP eMS User's Guide

The libraries you specify on a GLOBAL command line are searched in the order
you specify them. A GLOBAL command remains in effect for the remainder of
your terminal session, or until you IPL CMS. To find out what macro libraries are
currently available for searching, issue the command:

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

To create a CMS macro library, each macro or copy file you want included in the
MACLm must first be contained in a CMS file with a filetype of COpy or
MACRO. If you are creating a CMS MACLm file from a DOS library you must
use the SSERV command to copy a file from any source statement library other
than an E sublibrary, or use the ESERV command to copy and de-edit a macro
from an Esublibrary. The SSERV command uses a default filetype of COpy; the
ESERV command uses a default filetype of MACRO.

The following example shows how to copy macros from various sources and shows
how to create and use the CMS MACLm that contains these macros.

1. Enter the CMS/DOS environment with the DOS system residence on a disk
accessed as mode C:

set dos on c

2. Copy the macro book named OPEN from the A sublibrary of the system
source statement library:

sserv a open

3. Establish a private source statement library:

access 351 d
assgn sysslb d
dlbl ijsyssl d dsn ? (sysslb
test source. lib

4. Issue the SSERV command for a macro in the M sublibrary of TEST
SOURCE.LIB:

sserv m releas

5. Create an ESERV file to copy from the E sublibrary:

xedit contrl eserv
input punch contrl
file

6. Execute the ESERV command:

assgn sysin a
eserv contrl

7. Create a CMS macro library named MYDOSMAC from the files just created,
which are named OPEN COPY, RELEAS COpy, and CONTRL MACRO:

maclib gen mydosmac open releas contrl

The MA CLIB Command

GEN Function:

8. To use these macros in an assembler language program, you must indicate that
this MACLIB is accessible before assembling a source file:

global maclib rnydosmac

The MACLm command performs a variety of functions. You use it to:

• Create the MACLm (GEN function)
• Add, delete, or replace members (ADD, DEL, and REP functions)
• Compress the MACLm (COMP function)
• List the contents of the MACLm (MAP function)

Descriptions of these MACLIB command functions follow.

The GEN (generate) function creates a CMS macro library from input files
specified on the command line. The input files must have filetypes of either
MACRO or COPY. For example:

rnaclib gen myrnac get pdump put regequ

creates a macro library with the file identifier MYMAC MACLIB At from macros
existing in the files with the file identifiers:

GET {MACRC},PDUMP {MACRO},PUT {MACRo},and REGEQU {MA. CRO}
COpy COpy COpy COpy

If a file named MYMAC MACLm At already exists, it is erased.

Assume that the files GET MACRO, PDUMP COPY, PUT MACRO, and
REGEQU COpy exist and contain macros in the following form:

GET MACRO
-G~

WAIT

PDUMP COPY
*COPY PDUMP

PDUMP
*COPY WAIT

WAIT

PUT MACRO
PUT--

REGEQU COPY
XREG

YREG

The resulting file, MYMAC MACLm At, contains the members:

GET
WAIT
PDUMP

WAIT
PUT
REGEQU

The WAIT macro, which appears twice in the input to the connnand, also appears
twice in the output. The MACLIB command does not check for duplicate macro
names. If, at a later time, the WAIT macro is requested from MYMAC MACLm,
the first WAIT macro encountered in the directory is used.

When COpy files are added to MACLIBs, the name of the library member is
taken from the name of the COPY file, or from the ·COPY statement, as in the file
PDUMP COPY, above.

Note Although the file REGEQU COpy contained two macros, they were
both included in the MAC LIB with the name REGEQU. When the input
file is a MACRO file, the member name is taken from the macro prototype
statement in the MACRO file.

Chapter 10. Developing VSE Programs Under CMS 10-17

ADD Function:

REP Function:

COMP Function:

10-18 VM/SP eMS User's Guide

The ADD function appends new members to an existing macro library. For
example, assume that MYMAC MACLIB Al exists as created in the example in
the explanation of the GEN function and the file DTFDI COPY exists as follows:

*COPY DTFDI
DTFDI macro definition

*COPY DIMOD
DIMOD macro definition

If you issue the command:

maclib add mymac dtfdi

the resulting MYMAC MACLIB Al contains the members:

GET
WAIT
PDUMP
WAIT

PUT
REGEQU
DTFDI
DIMOD

The REP (replace) function deletes the directory entry for the macro definition in
the files specified. It then appends new macro definitions to the macro library and
creates new directory entries. For example, assume that a macro library
TESTMAC MACLIB contains the members A, B, and C, and that the following
command is entered:

maclib rep testmac a c

The files represented by file identifiers A MACRO and C MACRO each have one
macro definition. After execution of the command, TESTMAC MAC LIB contains
members with the same names as before, but the contents of A and C are different.

DEL Function:: The DEL (delete) function removes the specified macro name
from the macro library directory and compresses the directory so there are no
unused entries. The macro definition still occupies space in the library, but since
no directory entry exists, it cannot be accessed or retrieved. If you attempt to
delete a macro for which two macro definitions exist in the macro library, only the
first one encountered is deleted. For example:

maclib del mymac get put wait dtfdi

deletes macro names GET, PUT, WAIT, and DTFDI from the directory of the
macro library named MYMAC MACLIB. Assume that MYMAC exists as in the
ADD function example. After the above command, MYMAC MACLIB contains
the following members:

PDUMP
WAIT
REGEQU
DIMOD

Execution of a MACLIB command with the DEL or REP functions can leave
unused space within a macro library. The COMP (compress) function removes any
macros that do not have directory entries. This function uses a temporary file
named MACLIB CMSUTI. For example, the command:

MAP Function:

maclib comp mymac

compresses the library MYMAC MACLIB.

The MAP function creates a list containing the name of each macro in the
directory, the size of the macro, and its position within the macro library. If you
want to display a list of the members of a MACLIB at the terminal, enter the
command:

maclib map mymac (term

The default option, DISK, creates a file on your A-disk which has a file type of
MAP and a filename equal to the filename of the MACLIB. If you specify the
PRINT option, then a copy of the map file is spooled to your virtual printer as well
as being written onto disk.

Manipulating MACLIB Members

The following CMS commands supply a MEMBER option, which allows you to
reference individual members of a MACLIB:

PRINT (to print a member)
• PUNCH (to punch a member)
• TYPE (to display a member)
• FILEDEF (to establish a file definition for a member)

You can use the CMS editor to create the MACRO and COpy files and then use
the MACLIB command to place them in a library. Once they are in a library, you
can erase the original files.

To extract a member from a macro library, you can use either the PUNCH or the
MOVEFILE command. If you use the PUNCH command you can spool your
virtual card punch to your own virtual reader:

cp spool punch to *

Then punch the member:

punch testmac maclib (member get noheader

and read it back onto disk:

readcard get macro

In the above example, the member was punched with the NOHEADER option of
the PUNCH command, so that a name could be assigned on the READCARD
command line. If a header had been created for the file, it would have indicated
the filename and file type as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for the input
member name and the output macro or copy file before entering the MOVEFILE
command:

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

Chapter to. Developing VSE Programs Under eMS 10-19

System MACLms

10-20 . VM/SP eMS User's Guide ..

This example copies the member ENTER from the macro library TESTCOPY
MACLffi A into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members from
CMS'MACLIBs, each member is followed by a / / record, which is a MACLffi
delimiter. You can edit the file and use the DELETE subcommand to delete the / /
record.

If you wish toniove the complete MACLIB to another file, use the COPYFILE
command.

The macro libraries that are on the system disk contain CMS and OS assembler
language macros. The MACLIBs are:

• CMSLIB MACLffi, which contains the CMS macros from VM/370.

• DMSSP MACLIB, which contains macros that are new or changed in VM/SP.

Note: When assembling programs that use CMS macros, both of these
libraries should be identified via the GLOBAL command. DMSSP should
precede CMSLIB in the search order.

• DOSMACRO MACLffi, which contains macros used internally by CMS/DOS

Note: These macros should not be used in user written programs. To assemble
programs that use VSE macros, you should follow the procedures as previously
described in this chapter.

• OSMACRO MACLffi, OSMACROI MACLffi, and TSOMAC MACLffi,
which are used by OS programmers.

• DMKSP MACLIB, which contains macros that support CPo

• OSVSAM MACLffi, which contains the subset of supported OS/VSAM
macros.

When you use VSAM on CMS and write programs using VSE/VSAM macros, you
can build a VSE/VSAM maclib by issuing the CMS VSEVSAM command. The
maclib will contain the supported VSE/VSAM macros and the following VSE
macros:

CDLOAD
CLOSE
CLOSER
GET
OPEN
OPENR
PUT

Refer to the VM / SP Installation Guide for the CMS VSEVSAM command
documentation.

VSE Assembler Language Macros Supported

Figure 10-2 on page 10-22 lists the VSE assembler language macros supported by
CMS/DOS. You can assemble source programs that contain these macros under
eMS/DOS, provided that you have the macros available in either your own or a
shared CMS macro library. The macros whose functions are described in the
"Function" column with the term "no-op" are supported for assembly only; when
you execute programs that contain these macros, the VSE functions are not
performed. To accomplish the macro function you must execute the program in a
VSE virtual machine.

Chapter 10. Developing VSE Programs Under CMS 10-21

Macro SVC Function

CALL Pass control to another program

CANCEL 06 Terminate processing

CDLOAD 65 Load a VSAM phase

CHECK Verify completion of a read or write operation

CLOSE/ Deactivate a data file
CLOSER

CNTRL Control a physical device

COMRG 33 Return address of background partition communication region

DEQ 41 no-op

DTFxx Establish file definitions

DUMP Dump storage and registers and terminate processing

ENQ 42 no-op

EOJ 14 Terminate processing normally

ERET Provide an error routine

EXCP 00 Execute a channel program

EXIT PC 17 Return from program check routine

EXIT AB 95 Return from abnormal termination routine

EXTRACT 98 Retrieve PUB, storage boundaries, or CPUID information

FCEPGOUT 86 no-op

FETCH 01 Load and pass control to a pbase

02 Load and pass control to a logical transient

FREE 36 no-op

FREEVIS 62 Release user free storage

GENL Generate a phase directory list

GET Access a sequential file

GETFLD/ 107 Provide macro interface support for system information retrieval.
MODFLD

GETVCE 99 Return requested device information to output area.

GETVIS 61 Obtain user free storage

GETIME 34 Get the time of day

JDUMP Dump storage and registers and terminate processing

LOAD 04 Load a phase into storage

LOCK/ 110 Resource control
UNLOCK

MVCOM 05 Modify bytes in the partition communication region

NOTE Manage data set access

OPEN/ Activate a data file
OPENR

Figure 10-2 (Part 1 of 2). VSE Macros Supported by eMS

10-22 VM/SP eMS User's Guide

Macro SVC Function

PAGEIN 87 no-op

PDUMP Dump storage and registers and continue processing

PFIX 67 no-op

PFREE 68 no-op

POINTR Position a file for reading

POINTS Reposition a file to its beginning

POINTW Position a file for writing

POST 40 Post the event control block

PRTOV Control printer overflow

P,UT Write to a sequential file

PUTR Communicate with the system operator

READ Access a sequential file

RELPAG 85 no-op

RELSE Skip to begin reading next block

RETURN Return control to calling program

RUNMODE 66 Check if program is running real or virtual

SECTVAL 75 Obtain a sector number

SETIME 10/24 no-op

SETPFA 71 no-op

STXIT AB 37 Provide or terminate linkage to abnormal ending routine

STXITPC 16 Provide or terminate linkage to program check routine

STXITIT 20 no-op

STXITOC 18 no-op

SUB SID 105 Retrieve information on supervisor subsystem

TRUNC Skip to begin writing next block

TTIMER 52 Return a 0 in Register 0 (effectively a no-op)

WAIT 07 Wait for the completion of I/O

WRITE Write to a sequential file

xxMOD Create Logical 10CS routine inline

Figure 10-2 (Part 2 of 2). VSE Macros Supported by eMS

Assembling Source Programs

If you are a DOS assembler language programmer using CMS/DOS, you should be
aware that the assembler used is the VM/SP assembler, not the DOS assembler.
The major difference is that the VM/SP assembler, invoked by the ASSEMBLE
command, is designed for interactive use, so that when you assemble a program,
error messages are displayed at your terminal when compilation is completed, and
you do not have to wait for a printed listing to see the results. You can correct
your source file and reassemble it immediately. When your program assembles
without errors, you can print the listing.

Chapter 10. Developing VSE Programs Under CMS 10-23

10-24 VM/SP eMS User's Guide

To specify options to be used during the, assembly, you enter them on the
ASSEMBLE command line. So, for example, if you do not want the output
LISTING file placed on disk, you can direct it to the printer:

assemble myfile (print

All of the ASSEMBLE command options are listed in VM/SP CMS Command and
Macro Reference.

When you invoke the ASSEMBLE command specifying a file with a filetype of
ASSEMBLE, CMS searches all of your accessed disks, using the standard search
order; until it locates the file. When the assembler creates the output LISTING and
TEXT files, it writes them onto disk according to the following priorities:

1. If the source file is on a read/Write disk, the TEXT and LISTING files are
written onto the. same disk.

2. If the source file is on a read-only disk that is an extension of a read/write
disk, the TEXT and LISTING files are written onto the parent disk.

3. If the source is on any other read-only disk, the TEXT and LISTING files are
written onto the A-disk.

In all of the above cases, the filenames assigned to the TEXT and LISTING files
are the same as the filename of the input file.

The output files used by the assembler are defined via FILEDEF commands issued
by CMS when it calls the assembler. If you issue a FILEDEF command using one
of the assembler ddnames before you issue the ASSEMBLE command, you can
override the default file definitions.

Theddname for the source input file is ASSEMBLE. If you enter:

filedef assemble reader·
assemble sample

then the assembler reads your input file from your card reader, and assigns the
filename SAMPLE to the output TEXT and LISTING files. You can use this
method to assemble programs directly from DOS sequential files on DOS disks.
For example, to assemble a source file named DOSPROG from a DOS disk
accessed as a C-disk, you could enter:

filedef assemble c dsn dosprog (recfm f lrecl 80
assemble dosprog

Again, the name you assign on the ASSEMBLE command may be anything; the
assembler uses this name to assign filenames to the TEXT and LISTING output
files.

LISTING and TEXT are the ddnames assigned to the SYSLST and SYSPCH
output of the assembler. You might issue file definitions to override these defaults
as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble source

When these commands are executed, the output from the assembly of the file
SOURCE ASSEMBLE is written to the disk files ASSEMBLE LISTFILE and
ASSEMBLE TEXTFILE.

Link-editing Programs in eMS/DOS

Linkage Editor Input

When the assembler or one of the language compilers executes, the object module
produced is written to a CMS disk in a file with a filetype of TEXT. The filename
is always the same as that of the input source file. These TEXT files (sometimes
referred to as decks, although they are not real card decks) can be used as input to .
the linkage editor or can be the target of an INCLUDE linkage editor control
statement.

You can invoke the CMS/DOS linkage editor with the DOSLKED command, for
example:

doslked test testlib

where TEST is the filename of either a DOSLNK. or TEXT file (that is, a file with
a file type of either DOSLNK or TEXT) or the name of a relocatable module in a
system or private relocatable library. TESTLIB indicates the name of the output
file which, in CMS/DOS, is a phase library with a filetype of DOSLIB.

When you issue the DOSLKED command, CMS first searches for a file with the
specified name and a filetype of DOSLNK. If none are found, it searches the
private relocatable library, if you have assigned one (you must issue an ASSGN
command for SYSRLB and use the ddname IJSSYRL in a DLBL statement). If
the module is still not found, CMS searches all of your accessed disks for a file with
the specified name and a filetype of TEXT. Last, CMS searches the system
relocatable library, if it is available (you must enter the CMS/DOS environment
specifying the mode letter of the DOS system residence if you want to access the
system libraries).

You can place the linkage editor control statements ACTION, PHASE,
INCLUDE, and ENTRY in a CMS file with a filetype of DOSLNK. When you use
the INCLUDE statement, you may specify the filename of a CMS TEXT file or the
name of a module in a DOS relocatable library:

INCLUDE XYZ

or you may use the INCLUDE control statement to indicate that the object code
follows:

INCLUDE
(CMS TEXT file)

A typical DOSLNK file, named CONTROL DOSLNK., might contain the
following:

ACTION REL
PHASE PROGMAIN,S
INCLUDE SUBA
PHASE PROGA,*
INCLUDE SUBB

When you issue the command:

Chapter to. Developing VSE Programs Under CMS 10-25

Link-editing TEXT Files

10-26 VM/SP eMS User's Guide

doslked control

the linkage editor searches the following for the object files SUB A and SUBB:

• A DOS private relocatable library, provided you have issued the ASSGN and
DLBL commands to identify it:

assgn sysrlb d
dlbl ijsysrl d dsn ? (sysrlb

• Your CMS disks for files with filenames SUBA and SUBB and a file type of
TEXT

• The system relocatable library located on the DOS system residence volume (if
it is available)

When you want to link-edit individual CMS TEXT files, you can insert linkage
editor control statements in the file using the editor and then issue the DOSLKED
command:

xedit rtnb text
input include rtnc
file
doslked rtnb mydoslib

When the above DOSLKED command is executed, the CMS file RTNB TEXT is
used as linkage editor input, as long as there is no file named R TNB DOSLNK.
The ACTION statement, however, is not recognized in TEXT files.

You can also link-edit relocatable modules directly from a DOS system or private
relocatable library, provided that you have identified the library. If you do this,
however, you cannot provide control statements for the linkage editor.

To link-edit a relocatable module from a DOS private library and add linkage editor
control statements to it, you could use this procedure:

1. Identify the library and use the RSERV command to copy the relocatable
module into a CMS TEXT file. In this example, the module RTNC is to be
copied from the library OBJ.MODS:

assgn sysrlb e
dlbl ijsysrl e dsn obj mods (sysrlb
rserv rtnc

2. Create a DOSLNK file, insert the linkage editor control statements, and copy
the TEXT file created in step 1 into it using the GETFILE subcommand:

xedit rtnc doslnk
input action rei
getfile rtnc text a
file

3. Invoke the linkage editor with the DOSLKED command:

doslked rtnc mydoslib

Alternatively, you could create a DOSLNK file with the following records:
DOSLNK file

ACTION REL
INCLUDE RTNC

and link-edit the module directly from the relocatable library. If you do not need a
copy of the module on a eMS disk, you might want to use this method to conserve
disk space.

When the linkage editor is reading modules, it may encounter a blank card at the
end of a file, or a * (comment) card at the beginning of a file. In either case, it
issues a warning message indicating an invalid card, but continues to complete the
link-edit.

Linkage Editor Output: eMS DOSLIBs

Linkage Editor Maps

The eMS/DOS linkage editor always places the link-edited executable phase in a
CMS library with a filetype of DOSLIB. You should specify the filename of the
DOSLIB when you enter the DOSLKED command:

doslked progO templib

where PROGO is the relocatable module you are link-editing and TEMPLIB is the
filename of the DOSLIB.

If you do not specify the name of a DOSLIB, the output is placed in a DOSLIB
that has the same name as the DOSLNK or TEXT file being link-edited. In the
above example, a eMS DOSLIB is created named TEMPLIB DOSLIB, or, if the
file TEMPLIB DOSLIB already exists, the phase PROGO is added to it.

DOSLIBs can contain relocatable core image phases suitable for execution in
CMS/DOS. Before you can access phases in it, you must identify it to CMS with
the GLOBAL command:

global doslib templib permlib

When CMS is searching for executable phases, it searches all DOSLIBs specified
on the last GLOBAL DOSLIB command line. If you have named a number of
DOSLIBs, or if any particular DOSLIB is very large, the time required for CMS to
fetch and execute the phase increases. You should use separate DOSLIBs for
executable phases, whenever possible, and then specify only the DOSLIBs you
need on the GLOBAL command.

When you link-edit a module into a DOSLIB that already contains a phase with the
same name, the directory entry is updated to point to the new phase. However, the
space that was occupied by the old phase is not reclaimed. You should periodically
issue the command:

doslib comp libname

where libname is the filename of the DOSLIB, to compress the DOSLIB and delete
unused space.

The DOSLKED command also produces a linkage editor map, which it writes into
a CMS file with a filename that is that of the name specified on the DOSLKED
command line and a filetype of MAP. The filemode is always AS. If you do not
want a linkage editor map, use the NOMAP option on the ACTION statement in a
DOSLNK file.

Chapter 10. Developing VSE Programs Under CMS 10-27

Executing Programs in eMS/DOS

Executing DOS Phases

After you have assembled or compiled a source program and link-edited the TEXT
files J you can execute the phases in your CMS virtual machine. You may not,
however, be able to execute all your DOS programs directly in CMS. There are a
number of execution-time restrictions placed on your virtual machine by VM/SP.
You cannot execute a program that uS,es:

• Multitasking
More than one partition

• Teleprocessing
• ISAM macros to read or write files
• CMS module files created by DOS programs
• Sets the EC mode bit in the PSW

The above is only a partial list, representing those restrictions with which you might
be concerned. For a complete list of restrictions, see the VM / SP Planning Guide
and Reference. See also the usage notes of the FETCH command in the VM/SP
CMS Command and Macro Reference.

You can load executable phases into your CMS virtual machine using the FETCH
command. Phases must be link-edited before you load them; they must have been
link-edited with ACTION REL. When you issue the FETCH command, you
specify the name of the phase to be loaded:

fetch rnyprog

Then you can begin executing the program by issuing the START command:

start

Or, you can fetch a phase and begin executing it on a single command line:

fetch prog2 (start

When you use the FETCH command without the START option, CMS issues a
message telling you at what virtual storage address the phase is loaded:

PHASE PROG2 ENTRY POINT AT LOCATION 020000

Location X'20000'is the starting address of the user program area for CMS;
relocatable phases are always loaded starting at this address unless you specify a
different address using the ORIGIN option of the FETCH command:

fetch prog3 (origin 22000
start

The program PROG3 executes beginning at location 22000 in the CMS user
program area.

Search Order/or Executable PhafeS

10-28 VM/SP eMS User's Guide

When you execute the FETCH command, CMS searches for the phase name you
specify in the following places:

1. In a DOS private core image library on a DOS disk. If you have a private
library you want searched for phases, you must identify it using the ASSGN
and DLBL commands, using the logical unit SYSCLB:

assgn sysclb d
dlbl ijsyscl d dsn ? (sysclb

2. In CMS DOSLIBs on CMS disks. If you want DOSLms searched for phases,
you must use the GLOBAL command to identify them to CMS/DOS:

global doslib templib mylib

You can specify up to eight DOSLIBs on the GLOBAL command line.

3. On the DOS system residence core image library. If you wani the system core
image library searched you must have entered the CMS/DOS environment
specifying the·mode letter of the system residence:

set dos on z

When you want to fetch a core image phase that has copies in both the core image
library and a DOSLIB, and you want to fetch the copy from the CMS DOSLm,
you can bypass the core image library by entering the command:

assgn sysclb ua

When you need to use the core image library, enter:

assgn sysclb c

where C is the mode letter of the system residence volume. You do not need to
reissue the DLBL command to identify the library.

Making I/O Device Assignments

If you are executing a program that performs I/O, you can use the ASSGN
command to relate a system or programmer logical unit to a real I/O device:

assgn syslst printer
assgn sys052 reader

In this example, your program is going to read input data from your virtual card
reader; the output print file is directed to your virtual printer. If you want to
reassign these units to different devices, you must be sure that the files have been
defined as device independent.

If you assign a logical unit to a disk, you should identify the file by using the DLBL
command. On the DLBL command, you must always relate the DLBL to the
system or programmer logical unit previously specified in an ASSGN command:

assgn sys015 b
dlbl myfile b dsn ? (sys015

When you enter the DLBL command with the? operand you are prompted to enter
the DOS file-id.

You mustissue all of the ASSGN and DLBL commands necessary for your
program's I/O before you issue the FETCH command to load the program phase
and begin executing.

Chapter 10. Developing VSE Programs Under CMS 10-29

Specifying a . Virtual Partition Siu

10-30 VM/SP eMS User's Guide

For most of the programs that you execute in CMS, you do not need to specify
how large a partition you want those programs to execute in. When you issue the
START command or use the START option on the FETCH command, CMS
calculates how much storage is available in your virtual machine and sets a partition
size. CMS calculates how much storage is available in the following manner:

FREELOWE - (MAINHIGH + (4096 * FRERESPG))

where:

FREELOWE

MAINHIGH

FRERESPG

equals the low extent of allocated storage obtained from the top
pf virtual storage downwards via the DMSFREE system
request.

equals the high extent of allocated storage obtained from the
low virtual storage upwards via the GETMAIN user request for
storage.

equals the amount of storage to be reserved for subsequent
system requests, in pages.

In some instances, you may want to control the partition size:

• For performance considerations

• Because the default may not leave enough free storage to satisfy the GETVIS
commands issued by the DOS program or the access method services function
being executed.

You can set the partition size with the DOSP ART operand of the SET command.
For example, after you enter the command:

set dospart 300k

all programs that you subsequently execute during this session will execute in a
300K partition. In this way you can:

• Set a smaller partition size for programs that run better in smaller partitions.

• Set a smaller partition size to leave more free storage. If the reduction of the
DOS partition does not free enough storage for the GETVIS commands, a
larger virtual machine must be defined. If you enter:

set dospart off

the CMS calculates a partition size when you execute a program. This is the
default setting.

Note: The CMS partition, unlike the DOS partition, is used only for the
loading and executing of programs invoked by the FETCH or LOAD
commands. Areas allocated by GETVIS will be assigned addresses outside
the partition but within the user's virtual machine.

Setting the UPSI Byte

If your program uses the user program switch indicator (UPSI) byte, you can set it
by using the UPSI operand of the CMS SET command. The UPSI byte is initially
binary zeros. To set it to ones, enter:

set upsi 11111111

To reset it to zeros, enter:

set upsi off

Any value you set remains in effect for the duration of your terminal session, unless
you reload CMS (with the IPL command).

Debugging Programs in eMS/DOS

You can debug your DOS programs in CMS/DOS using the facilities of CP and
CMS. By executing your programs interactively, you can more quickly determine
the cause of an error or program abend, correct it, and attempt to execute a
program again.

The CP and CMS debugging facilities are described in Chapter 13, "Debugging
Your Program Using VM/SP" on page 13-1. Additional information for assembler
language programmers is in Chapter 8, "Programming for The CMS Environment"
on page 8-1.

Using CMS EXEC Procedures in CMS/DOS

During your program development and testing cycle, you may want to create CMS
EXEC procedures to contain sequences of CMS commands that you execute
frequently. For example, if you need a number of MACLIBs, DOSLms, and
DLBL definitions to execute a particular program, you might have an EXEC
procedure as follows:

Chapter 10. Developing VSE Programs Under CMS 10-31

10-32 VM/SP eMS User's Guide

&CONTROL ERROR TIME
&ERROR &EXIT &RETCODE
GLOBAL MACLIB TESTLIB DOSMAC
ASSEMBLE TESTA
PRINT TESTA LISTING
DOSLKED TESTA TESTLIB
GLOBAL DOSLIB TESTLIB PROGLIB
ACCESS 200 E
ASSGN SYS010 E
&BEGSTACK
DOS.TEST3.STREAM.BETA
&END
DLBLDtSK1E DSN ? (SYS010
ASSGN SYS011 PUNCH
CP SPOOL PUNCH TO *
ASSGN SYS012 A
DLBL OUTFILE A CMS TEST DATA (SYS012
FETCH TESTA (START
&IF &RETCODE = 100 &GOTO -RET100
&IF &RETCODE = 200 &GOTO -RET200
&EXIT &RETCODE
-RET100 &CONTINUE

-RET200 &CONTINUE

The&CONTROL and &ERROR control statements in the EXEC procedure ensure
that if an error occurs during any part of the EXEC, the remainder of the EXEC
does not execute, and the execution summary of the EXEC indicates the command
that caused the error.

Note that for theDLBL command entered with the DSN? operand, you must
stack the response before issuing the DLBL command. In this example, since the
DOS file-id has more than eight characters, you must use the &BEGSTACK
control statement to stack it. If you use the &STACK control statement, the
EXEC processor truncates all words to eight characters.

When your program is finished executing, the EXEC special variable &RETCODE
indicates the contents of general register 15 at the time your program exited. You
can use this value to perform additional steps in your EXEC procedure. Additional
steps are indicated in the preceding example by ellipses.

For information on CMS EXEC procedures, see Appendix B, "The CMS EXEC
Processor. "

Chapter 11. Using Access Method Services and VSAM 'Under CMS and CMS/DOS

This section describes how you can use CMS to create and manipulate VSAM
catalogs, data spaces, and files on as and DOS disks using access method services.
The CMS support is based on VSE and VSE/VSAM; this means that if you are an
as VSAM user and plan to use CMS to manipulate VSAM files, you are allowed
to use those functions of access method services that are available under the access
method services portion of VSE/VSAM. The control statements you can use are
described in the publication Using VSE/VSAM Commands and Macros.

You can use CMS to:

• Execute the access method services utility programs for VSAM and SAM data
sets on OS and DOS disks and minidisks. CMS can both read and write
VSAM files using access method services.

• Compile and execute programs that read and write VSAM files from VSE
programs

• Compile and execute programs that read and write VSAM files from OS
programs.

VSAM files written under CMS are written using VSE/VSAM. Certain files
written under CMS cannot be used directly by OS/VS VSAM. For information
relative to compatibility between VSE/VSAM and OS/VS VSAM files, you should
refer to the VSE/VSAM General Information Manual. None of the CMS
commands normally used to manipulate CMS files are applicable to VSAM files,
however. This includes such commands as PRINT, TYPE, EDIT, COPYFILE, and
so on.

This section provides information on using the CMS AMSERV command with
which you can execute access method services. Information is provided on using
VSAM macros in CMS. The discussion is divided as follows:

"Using the AMSERV command" contains general information.

• "Manipulating as and DOS Disks for Use With AMSERV" describes how to
use CMS commands with OS and DOS disks.

• "Defining DOS Input and Output Files" is for CMS/DOS users only.

• "Defining OS Input and Output Files" is for OS users only.

"Using AMSERV Under CMS" includes notes and examples showing how to
perform various access method services functions in CMS.

• "VSE/VSAM Macros" describes the macros and their support in CMS.

"OS/VSAM Macros" describes the OSVSAM MACLIB supplied with CMS.

Executing VSAM Programs Under eMS

The commands that are used to define input and output data sets for access method
services (DLBL) and for CMS/DOS users (ASSGN) are also used to identify
VSAM input and output files for program execution. Information on executing

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-1

11-2 VM/SP eMS User's Guide

programs under CMS that manipulate VSAM files is contained in the program
product documentation for the language processors. These publications are listed in
the VM / SP Introduction.

Restrictions on the use of access method services and VSAM under CMS for OS
and DOS users are listed in VM/SP CMS Command and Macro Reference, which
also contains complete CMS and CMS/DOS command formats, operand
descriptions, and responses for each of the commands described here.

When you are going to execute VSAM programs in CMS or CMS/DOS, you
should remember to issue the DLBL command to identify the master catalog, as
well as any other program input or output file you need to define.

Since VSE/VSAM Release 2, VSE/VSAM has reduced its dependency on explicit
ASSGN, EXTENT, and DLBL information. In many cases, you no longer need to
specify this information. Identification of the master catalog within CMS, however,
still requires ASSGN and DLBL commands.

For complete information concerning the ASSGN, DLBL, and EXTENT
requirements, refer to the VSE/VSAM Programmer's Reference.

In the discussion that follows, ASSGN, DLBL, and EXTENT information is
included even though it may not be required.

Opening an ACB with a MACRF=ADR and subsequently issuing a GET or a PUT
with KEYED ACCESS specified in the RPL when SHAREOPTION (4) is
specified, is not allowed in VSE/VSAM Release 2. Likewise, opening an ACB
with KEYED ACCESS and subsequently issuing a GET or a PUT with
MACRF=ADR specified in the RPL when SHARE OPTION (4) is specified is not
allowed. Please refer to Using VSE/VSAM Commands and Macros for more
information.

VSE/VSAM supports the functions that were previously supported as well as the
following enhancements:

Volume ownership is enhanced so that multiple catalogs may own space in the
same DASD volume if only one recoverable catalog owns space on the volume
and only if one catalog resides on the volume.

• You can verify the syntax of the AMS commands without actually executing
them by using the SYNCHK parameter of the AMS P ARM command.

• Using the IGNOREERROR parameter of the AMS DELETE command, you
can delete incomplete catalog information that may have resulted from a
system failure during DEFINE or DELETE processing. When you specify the
IGNOREERROR parameter of the AMS DELETE command, the PRINT
option must be used on the CMS AMSERV command to send the listing to the
virtual printer.

• A CMS VSAM user (with or without DOS set ON) may invoke the
VSE/VSAM Catalog Check Service Aid to verify a complete catalog structure
by invoking the CMS CATCHECK command.

Using the AMSERV Command

In CMS, you execute access method services utility programs with the AMSERV
command, which has the basic format:

amserv filename

"filename" is the name of a CMS file that contains the control statements for
access method services.

Note: Throughout the remainder of this section the term "AMSERV" is
used to refer to both the CMS AMSERV command and the OS/VS or
VSE/VSAM access method services, except where a distinction is being
made between CMS and access method services.

You create an AMSERV file with the CMS editor using a filetype of AMSERV
and any filename you want; for example:

xedit mastcat amserv

The editor recognizes the filetype of AMSERV and so automatically sets the zone
for your input lines at columns 2 and 72. The sample AMSERV file being created
in the example above, MAST CAT AMSERV, might contain the following control
statements:

DEFINE MASTERCATALOG (NAME (MYCAT) -
VOLUME (123456) CYL(2) -
FILE (IJSYSCT))

AMSERV Output Listings

Note: The syntax of the control statements must conform to the rules for
access method services, including continuation characters and parentheses.
The only difference is that the AMSERV file does not contain a "/*" for a
termination indicator.

Before you can execute the DEFINE control statement in this AMSERV example,
you must define the output file, using the ddname IJSYSCT . You can do this using
the DLBL command, if required by VSE/VSAM. Since the exact form required in
the DLBL command varies according to whether you are an OS or a DOS user,
separate discussions of the DLBL command are provided later in this section. All
of the following examples assume that any disk data set or file that you are
referencing with an AMSERV command will have been defined by a DLBL
command, if required by VSE/VSAM.

When you execute the AMSERV command, the AMSERV control statement file
can be on any accessed CMS disk; you do not need to specify the filemode and, if
you are a DOS user, you do not need to assign SYSIPT. The task of locating the
file and passing it to access method services is performed by CMS.

When the AMSERV command is finished processing, you receive the CMS ready
message, and if there was an error, the return code (from register 15) is displayed
following the "R". For example:

R(00008);

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-3

or, if you are receiving the long form of the ready message, it appears:

R(00008); T=0.01/0.11 10:50:23

If you receive a ready message with an error return code, you should examine the
output listing from AMSERV to determine the cause of the error.

AMSERV output listings are written in CMS files with a filetype of LISTING; by
default, the filename is the same as that of the input AMSERV file. For example, if
you have executed:

amserv mastcat

and the CMS ready message indicates an error return code, you should examine the
file MASTCAT LISTING:

xedit mastcat listing
locate /idc/#=

Issuing the LOCATE subcommand twice to find the character string IDC will
position you in the LISTING file at the first access method services message.

The publication VSE/VSAM Messages and Codes lists and explains all of the
messages generated by access method services together with the associated return
and reason codes. .

Instead of editing the file, you could also use the TYPE command to display the
contents of the entire file, so that you would be able to examine the input control
statements as well as any error messages:

type mastcat listing

If you need to make changes to control statements before executing the AMSERV
command again, use the CMS editor to modify the AMSERV input file.

If you execute the same AMSERV file a number of times, each execution results in
a new LISTING file, which replaces any previous listing file with the same
filename.

Output from PRINT, LISTCAT, and LISTCRA

When you use AMSERV to print a VSAM file, or to list catalog or recovery area
contents using the PRINT, LIST CAT , or LISTCRA control statements, the output
is written in a listing file on a CMS read/write disk, and not spooled to the printer
unless you use the PRINT option of the AMSERV command:

amserv listcat (print

If you want to save the output, you should issue the AMSERV command without
the PRINT option and then use the CMS PRINT command to print the LISTING
file.

Controlling AMSERV Command Listings

11-4 VM/SP eMS User's Guide

The final disposition of the listing, as a printer or disk file, depends on how you
enter the AMSERV command. If you enter the AMSERV command with no
options, you get a CMS file with a filetype of LISTING and a filename equal to

that of the AMSERV input file. This LISTING file is usually written on your
A-disk, but if your A-disk is full or not accessed, it is written on any other
read/write CMS disk you have accessed.

If there is not enough room on your A-disk or any other disk, the AMSERV
command issues an error message saying that it cannot write the LISTING file. If
this happens, the LISTING file created may be incomplete and you may not be
able to tell whether or not access method services actually completed successfully.
In this case, after you have cleared some space on a read/write disk, you may have
to execute an AMSERV PRINT or LISTCAT function to verify the completion of
the prior job.

LISTING files take up considerable disk space, so you should erase them as soon
as you no longer need them.

AMSERV Command Listing Options

If you do not want AMSERV to create a disk file from the listing, you can execute
the AMSERV command with the PRINT option:

amserv myfile (print

The listing is spooled to your virtual printer, and no disk file is created. You might
want to use this option if you are executing a PRINT or LISTCAT control
statement and expect a very large output listing that you know cannot be contained
on any of your disks.

You can also control the filename of the output listing file by specifying a second
name on the AMSERV command line:

amserv listcat listcat1

In this example, the input file is LISTCA T AMSERV and the output listing is
placed in a file named LISTCATI LISTING. A subsequent execution of this same
AMSERV file:

amserv listcat listcat2

creates a second listing file, LISTCAT2 LISTING, so that the listing created from
the first execution is not erased.

Manipulating OS and DOS Disks for Use with AMSERV

To use CMS VSAM and AMSERV, you can have OS or DOS disks in your virtual
machine configuration. They can be assigned in your directory entry, or you can
link to them using the CP LINK command. You must have read/write access to
them in order to execute any AMSERV function or VSAM program that requires
opening the file for output or update.

Before you can use an OS or DOS disk you must access it with the CMS ACCESS
command:

access 200 d

The response from the ACCESS command indicates that the disk is in OS or DOS
format:

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-5

D(200) R!W - os
-- or -

D(200) R/W - DOS

You can write on these disks only through AMSERV or through the execution of a
program writing VSAM data sets. Onc(' an OS disk is used with AMSERV or
VSAM, CMS considers it a DOS disk, so regardless of whether you are an OS user,
when you access or request information about a VSAM disk, CMS indicates that it
is a DOS disk. You can still use the disk in an OS or DOS system for VSAM data
set processing. Although the format is not changed, the disk is still subject to any
incompatibilities that can currently exist between OS and DOS disks.

Data and MtBter Catalog Sharing

Disk Compatibility

11-6 VM/SP eMS User's Guide

There are two meanings of "sharing" that must be defined clearly with respect to
the CMS support of VSAM. The first is that of the SHAREOPTION parameter
found in the DEFINE (and ALTER) command for access method services.

The SHAREOPTION keyword enables the VSAM user to define how a component
will be shared within or across VSE partitions and VSE systems. Since CMS
supports only a single partition environment, cross partition sharing has no meaning
in the CMS environment. In addition, since CMS does not provide DASD sharing
support, cross system sharing is not supported. Consequently, the
SHARE OPTION parameter only has meaning within a CMS virtual machine
(functional equivalent of a VSE partition).

The area of sharing most familiar to CMS users is that of disk (minidisk)
read-sharing provided by CPo For the VSAM user under CMS, it is still possible to
share disks in read-only mode in order to read-share VSAM components.
However~ there is a restriction with respect to the VSAM master catalog. That is,
only one virtual machine may have the disk containing the master catalog in write
status. This is necessary even if only read functions are being performed during the
session. This is due to the master catalog updating read statistics at close time and,
when necessary, writing a new control record in the catalog at open time.

Under CMS, it is possible to have the master catalog disk read-only. A
programming modification (a bit in the ACB) was made to the DOS/VS VSAM
code so that VSAM knows it is running under CMS. If this bit is on, VSAM will
not write to the master catalog for either of the two cases described above. This
allows one or more CMS virtual machines to share the VSAM master catalog. This
assumes either no other virtual machine has the master catalog disk in write status
or only one virtual machine (DOS, OS, or CMS) has it.

Multiple CMS users may have the VSAM master catalog disk in read-only status
but only one virtual machine may have the same in write status. With respect to
dataset sharing, there is only read-sharing for the CMS user.

Since the CMS VSAM support writes VSAM datasets to DOS disks, the question
of disk compatibility is not one between CMS and DOS nor between CMS or OS
but rather between DOS and OS disks. In other words, because CMS actually uses
VSE/VSAM for processing VSAM datasets, all disks used by CMS VSAM are
DOS disks. For this reason, we need only discuss how DOS and OS disks are
compatible and, because they are compatible, we can conclude that CMS and OS
are also compatible.

In the format-4 DSCB, there is a bit in the VTOC Indicators (byte 59, bit 0)
defined by OS/VS to indicate (when OFF) that a format-5 label is included in the
VTOC. This bit is always ON under VSE because DOS does not maintain the
format-5 label. This technique allows OS/VS to realize when the format-5 is
invalid and that it must recompute free space and rewrite the format-5 so that
device integrity is maintained.

Thus, if a disk originally was used (allocated) under OS/VS and, subsequently,
with VSE further allocation could occur under VSE but with the format-5 ignored
and, therefore, no longer vaJid. If the disk was then used under OS/VS and still
further allocation performed, OS/VS would recognize the fact that the format-5
was not valid (contamination bit turned ON by VSE and would rewrite the
format-5, turning the bit OFF.

In terms of space allocation, this shows that DOS and OS disks are compatible in
that they are portable between the two systems, but one of the systems (OS/VS)
must perform some extra processing (rewriting format-5) prior to using the disk if
it intends to reallocate using the format-5.

DOS and OS disks containing VSAM datasets are no exception to this. OS and
DOS disks containing VSAM datasets that are used (allocated) under CMS are
portable among all three systems. Since CMS uses VSE/VSAM code, all disks
used under CMS to process VSAM datasets become DOS disks in that the
contamination bit is turned ON as it is when using VSE.

The term "minidisk" may be interchanged with the word "disk" in the above
explanation if we are dealing with "virtual" VSE and OS/VS systems. However,
real systems are not aware of, and do not support, minidisks.

VSE/VSAM uses physical record sizes ranging from .5K bytes to 8K bytes. All
multiples of .5K bytes between those two values are supported. OS/VS VSAM,
however, only supports physical record sizes of .5K, 1K, 2K, and 4K. Therefore,
certain VSAM files written under CMS cannot be used directly by OS/VS VSAM.

It is necessary to distinguish between two types of allocation under VSAM.

1. The actual space allocation on the disk
2. Allocation within the dataset itself.

Space for VSAM components must be allocated on the DASD using the DEFINE
commands. The only component for which the user is able to allocate space is for
the master catalog, a user catalog, a data space, and a UNIQUE cluster. In
defining the actual DASD space for components, there are parameters for the
DEFINE SPACE command which allows the user to include a "secondary
allocation" specification. These parameters (CYLINDERS, RECORDS,
BLOCKS, TRACKS) have this secondary facility only as a syntactic compatibility
with the OS/VS access method services commands. That is, VSE (and, therefore,
CMS) does not perform secondary space allocation on a DASD.

The facility does exist under VSE (and CMS) to extend data or index components
through already allocated data space, catalog extents, or UNIQUE cluster extents.
Thus, the CYLINDERS, TRACKS, RECORDS, and BLOCKS parameters of the
DEFINE commands for alternate indexes, clusters, and catalogs do not dynamically
allocate DASD space but only extend a component through existing space.

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-7

Using YM/SP Minidisks

If YOll: have a VM/SP minidisk in your virtual machine configuration, you can use it
to contain VSAM files. Before you can use it, it must be formatted with the Device
Support Facility program. 'When you request that a disk be added to your virtual
machine configuration for use with VSAM files under eMS, you should indicate
that it be formatted for use with OS or DOS. Or you can format it yourself using
the Device Support Facility. How to do this is described under "Using Temporary
Disks."

Note: If you are an OS user, you should be careful about allocating space
for VSAM on minidisks. Once you have used eMS AMSERV to allocate
VSAM data space on a minidisk, you should not attempt to allocate
additional space on that minidisk using an OS /VS system. OS does not
recognize minidisks, and would attempt to format the entire disk pack and
thus erase any data on it. To allocate additional space for VSAM, you
should use eMS again.

Minidisk space allocation is fully described in the VM / SP Planning Guide and
Reference.

Using The LISTDS Command

11-8 VM/SP eMS User's Guide

For as or DOS disks or minidisks, you can use the LISTDS command to determine
the extents of free space available for use by VSAM. You can also determine what
space is already in use. You can use this information to supply the extent
information when you define VSAM files.

The options used with VSAM disks are:

• EXTENT, to find out what extents are in use, and
• FREE, to find out what extents are available.

For example, if you have an OS disk accessed as a G-disk, and you enter:

listds g (extent

The response might look like:

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK)
000 VTOC 099 00 1881 099 18 1899

TRACKS
19

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 000 01 1 049 18 949 949

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 050 00 950 051 18 987 38

You could also determine the extent for a particular data set:

listds ? * (extent

DMSLDS220R ENTER DATA SET NAME:

system. recorder. file

The response might look like:

Using Temporary Disks

Formatting a Temporary Disk

EXTENT INFORMATION FOR 'SYSTEM RECORDER FILE' ON 'F' DISK:
SEQ TYPE CYL-HD(RELTRK} TO CYL-HD(RELTRK} TRACKS
000 DATA 102 00 1938 102 18 1956 19
002 DATA 010 06 206 010 08 208 3

LISTDS searches all minidisks accessed until it locates the specified data set. In this
example, the data set occupies two separate extents on disk F. If the data set is a
multivolume data set, extents on all accessed volumes are located and displayed.

If you want to find the free extents on a particular disk, enter:

listds g (free

The response might look like:

FREESPACE EXTENTS FOR 'G' DISK:
CYL-HD(RELTRK) TO CYL-HD(RELTRK}
052 00 988 052 01 989
054 02 1028 080 00 1520
081 01 1540 098 18 1880

TRACKS
2

493
341

You can use this information when you allocate space for VSAM files. If you
enter:

listds * (free

CMS lists all the free space available on all of your accessed disks.

When you need extra space on a temporary basis for use with CMS VSAM and
AMSERV, you can use the CP DEFINE command to define a temporary minidisk
and then use the Device Support Facilities program to format it. Refer to the
Device Support Facilities User's Guide and Reference. Once formatted and
accessed, it is available to your virtual machine for the duration of your terminal
session or until you detach it using the CP DETACH command. Remember that
anything placed on a temporary disk is lost, so that you should copy output that
you want to keep onto permanent disks before you log off.

The example below shows a control statement file and an EXEC procedure that,
together, can be used to format a minidisk using the Device Support Facility. For a
complete description of the control statements used, refer to the Device Support
Facilities User's Guide and Reference.

The input control statements for the Device Support Facility should be placed in a
CMS file, so that they can be punched to your virtual card reader. For this
example, suppose the statements are in a CMS file named TEMP DSF:

INIT UNIT(198) DEVTYP(3340) PRG NVFY VOLID(123456) DVTOC(9,7,5} -
MIMIC (MINI(10»

Note:
The example above begins in column 2.

Now consider the CMS file named TEMPDISK EXEC:

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-9

&CONTROL OFF
&ERROR &EXIT 100
CP DEFINE T3340 198 10
CP CLOSE READER
CP PURGE READER CLASS I
CP SPOOL PUNCH TO * CLASS I CONT NOH OLD
PUNCH IPL DSF * (NOH)
PUNCH TEMP DSF * (NOH)
CP SPOOL PUNCH NOCONT CLOSE
CP SPOOL READER CLASS I NOH OLD
CP IPL OOC CLEAR ATTN

11-10 VM/SP eMS User's Guide

You execute this procedure by entering the filename of the EXEC:

tempdisk

When the final line of this EXEC is executed, the Device Support Facility is in
control.

ICK005E DEFINE INPUT DEVICE, REPLY 'DDDD,CUU OR CONSOLE'
ENTER INPUT/COMMAND:

You should enter:

2540,00c

to indicate that the control statements should be read from your card reader, which
is a virtual 2540 device at virtual address OOC.

ICK006E DEFINE OUTPUT DEVICE, REPLY 'DDDD,CUU OR CONSOLE'
ENTER INPUT/COMMAND:

You should enter:

console

to indicate that the utility output should sent to your console.

ICK003D REPLY U TO ALTER VOLUME 198 CONTENTS, ELSE T
ENTER INPUT/COMMAND:

Reply to ICK003D:

u

to continue the execution.

When the Device Support Facilities program is completed, your virtual machine is
in a wait state and you must reload CMS (with the IPL command) to begin virtual
machine execution. You can then access the temporary disk:

ace 198 c

and CMS responds:

C (198) R/W - DOS

Defining DOS Input and Output Files

Using VSAM Catalogs

Note: This information is for VSE/VSAM users. OS/VS VSAM users should
refer to the section "Defining OS Input and Output Files." You may use the DLBL
command to define VSAM input and output files for both the AMSERV command
and for program execution. The operands required on the DLBL command are:

dlbl ddname filemode DSN datasetname (options SYSxxx

where "ddname" corresponds to the FILE parameter in the AMSERV file and
"datasetname" corresponds to the entry name or filename of the VSAM file.

There are several options you can use when issuing the DLBL command to define
VSAM input and output files. These are:

• VSAM, which you must use to indicate that the file is a VSAM file.

Note: You do not have to use the VSAM option to identify a file as a VSAM
file if you are using any of the other options listed here, since they imply that
the file is a VSAM file. In addition, the ddnames (filenames) IJSYSCT and
IJSYSUC also indicate that the file being defined is a VSAM file.

EXTENT, which you may use when you are defining a catalog or a VSAM
data space; you are prompted to enter the volume information. This option
effectively provides the function of the EXTENT card in VSE.

• MUL T, which you must use in order to access a multivolume VSAM file; you
are prompted to enter the extent information.

• CAT, which you can use to identify a catalog which contains the entry for the
VSAM file you are defining.

• BUFSP, which you can use to specify the size of the buffers VSAM should use
during program execution.

Options are entered following the open parenthesis on the DLBL command line,
with the SYSxxx:

assgn sys003 e
dlbl file1 b1 dsn workfile (extent cat cat2 sys003

While you are developing and testing your VSAM programs in CMS, you may find
it convenient to create and use your own master catalog, which may be on a CMS
minidisk. VSAM catalogs, like any other cluster, can be shared read-only among
several users.

You name the VSAM master catalog for your terminal session using the logical unit
SYSCAT in the ASSGN command and the ddname IJSYSCT for the DLBL
command. For example, if your VSAM master catalog is located on a DOS disk
you have accessed as a C-disk, you would enter:

assgn syscat c
dlbl ijsysct c dsn mastcat (syscat

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-11

Defining a Master. Catalog

11 ~12 VM/SP CMS,Userts Guide

Note: When you use the ddname IJSYSCT you do not need to specify the
VSAM option on the DLBL command.

You must identify the master catalog at the start of every terminal session. If you
are always using the same master catalog, you might include the ASSGN and
DLBL commands in an EXEC procedure or in your PROFILE EXEC. You could
also include the commands necessary to access the DOS system residence volume
and enter the eMS/DOS environment:

ACCESS 350 Z
SET DOS ON Z (VSAM
ACCESS 555 C
ASSGN SYSCAT C
DLBL IJSYSCT'C DSN MASTCAT (SYSCAT PERM

You should use the PERM option so that you do not have to reset the master
catalog assignment after clearing previous DLBL definitions.

You must use the VSAM option on the SET DOS ON command line if you want to
use any access method services function or access VSAM files.

The sample ASSGN and DLBL commands used in the above EXEC are almost
identical to those you issue to define a master catalog using AMSERV. The only
difference is the EXTENT option which lists the data spaces that this master
catalog is to control.

As an example, suppose that you have a 30-cylinder 3330 minidisk assigned to you
to use for testing your VSAM programs under CMS. Assuming that the minidisk is
in your directory at address 333, you should first access it:

access 333 d
D(333) R/W - as

If you formatted the minidisk yourself, you know what its label is. If not, you can
find out what the label is by using the CMS command:

query search

The response might be:

USR191
DOS333
SYS190
SYS19E

191 A
333 D
190 S
19E Y/S

R/W
R/W - as
R/O
R/O

Use the label DOS333 in the VOLUMES parameter in the MASTCAT AMSERV
file:

DEFINE MASTERCATALOG -
(NAME (MASTCAT)
VOLUME (DOS333) -
CYL (4) -
FILE (IJSYSCT)

Defining User Catalogs

To find out what extents on the minidisk you can allocate for VSAM, use the
LISTDS command with the FREE option:

listds d (free

The response from LISTDS might look like this:

FREESPACE INFORMATION FOR '0' DISK:
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 01 1 000 09 9 9
000 11 11 029 18 569 560

From this response, you can see that the volume table. of contents (VTOC) is
located on the first cylinder, so you can allocate cylinders 1 through 29 for VSAM:

assgn syscat d
dlbl ijsysct d dsn mastcat (syscat perm extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 551

(null line)

After entering the extents, in tracks, giving the relative track number of the first
track to be allocated followed by the number of tracks, you must enter a null line to
complete the command. A null line is required because, when you enter multiple
extents, entries may be placed on more than one line. If you do not enter a null
line, the next line you enter causes an error, and you must re-enter all of the extent
information.

Note: As in VSE the extents must be on cylinder boundaries, and you
cannot allocate cylinder O.

Now you can issue the AMSERV command:

amserv mastcat

A ready message with no return code indicates that the master catalog is defined.
You do not need to reissue the ASSGN and DLBL commands in order to use the
master catalog for additional AMSERV functions.

You can use the AMSERV command to define pIivate cataiogs and spaces for
them, also. The procedures for determining what space you can allocate are the
same as those outlined in the example of defining a master catalog.

For a user catalog, you may use any programmer logical unit, and any ddname:

Chapter 11. Using Access Method Services and VSAM .Under CMS and CMS/DOS 11-13

DEFINE USERCATALOG -

access 199 e
listds e (free

assgn sys001 e
dlbl cat1 e dsn private.cat1 (sys001 extent perm

amserv usercat

The file USERCAT AMSERV might contain the following:

(NAME (PRIVATE.CAT1) -
FILE (IJSYSUC)-
CYL (4) -
VOLUME (DOSVS2)) -
CATALOG (MASTCAT)

Using a Job Catalog

11-14 VM/SP eMS User's Guide

After this AMSERV command has completed successfully you can use the catalog
PRIVATE.CAT!. When you issue a DLBL command to identify a cluster or data
set cataloged in this catalog, you must identify the catalog using the CAT option on
the DLBLcommand for the file:

assgn sys100 c
dlbl file2 c dsn ? (sys100 cat cat1

Or, you can define this catalog as a job catalog.

If you want to set up a user catalog as a job catalog so that it will be searched
during all subsequent jobs, you can define the catalog using the special ddname
IJSYSUC. For example:

assgn sys101 c
dlbl ijsysuc c dsn private.cat1 (sysl01 perm

If you defined a user catalog (IJSYSUC) for a terminal session and you use the
AMSERV command to access a VSAM file, the user catalog takes precedence over
the master catalog. This means that for files that already exist, only the user
catalog is searched. When you define a cluster, it is cataloged in the user catalog,
rather than in the master catalog, unless you use the CAT option to override it.

If you want to use additional catalogs during a terminal session, you first define
them just as you would any other VSAM file:

assgn sys010 f
dlbl mycat2 f dsn private.cat2 (sysOl0 vsam

Then,when you enter the DLBL command for the VSAM file that is cataloged in
PRIV ATE.CAT2 use the CAT option to refer to the ddname of the catalog:

assgn sys011 f
dlbl input f dsn input.file (sys011 cat mycat2

If you want to stop using a job catalog defined as IJSYSUC, you can clear it using
the CLEAR option of the DLBL command:

Catalog Pmswort/s

dlbl ijsysuc clear

Then, the master catalog becomes the job catalog for files not defined with the
CAT option.

When you define passwords for VSAM catalogs in CMS, or when you use CMS to
access VSAM catalogs that have passwords associated with them, you must supply
the password from your terminal when the AMSERV command executes. The
message that you receive to prompt you for the password is the same message you
receive when you execute access method services:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

Verifying A Catalog Structure

As a CMS VSAM user (with or without ,DOS set ON), you can use the CMS
CA TCHECK command to invoke the VSE/VSAM Catalog Check Service Aid to
verify a complete catalog structure. If you do not specify a catalog name with the
CATCHECK command, the catalog specified with the DLBL command is used.
CATCHECK produces a print file containing the catalog analysis. For example,
issuing:

dlbl ijsysuc f dsn private.cat1 (vsam

and

catcheck

results in a print file containing the VSE/VSAM Catalog Check output.

If you had issued only a DLBL for the master catalog, issuing:

catcheck private.cat1

produces the same result.

Defining and Allocating Space for VSAM files

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -

You can use CMS AMSERV to allocate additional data spaces for VSAM. To use
the DEFINE SPACE control statement, you must have defined the catalog that is
to control the space, and you must have the volume or volumes on which the space
is to be allocated mounted and accessed.

For example, suppose you have a DOS-formatted 3330 disk attached to your
virtual machine at virtual address 255. After accessing the disk and determining
the free space on it, you could create a file named SPACE AMSERV:

VOLUME (123456)) -
CATALOG (PRIVATE.CAT2 CAT2)

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-15

Specifying Multiple Extents

Before executing this AMSERV file, define PRIVATE.CAT2 as a user catalog
using the ddname CAT2, and then define the ddname for the FILE parameter:

access 255 c
assgn sys010 c
dlbl cat2 c dsn private.cat2 (sys010 vsam
assgn sys011 c
dlbl file1 c (extent sys011 cat cat2
amserv space

You do not need to enter a data set name to define the space. When CMS prompts
you for the extents of the space you can enter the extent specifications:

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
190 1900

When you define space for VSAM, you should be sure that the VOLUMES
parameter and the space allocation parameter (whether CYLINDER, TRACKS,
BLOCKS, or RECORDS) in the AMSERV file agrees with the information you
provide in the DLBL command. All data extents must begin and end on cylinder
boundaries. Any additional space you provide in the extent information that is
beyond what you specified in the AMSERV file is claimed by VSAM.

When you are specifying extents for a master catalog, data space, or unique file,
you can specify up to 16 extents on a volume for a particular space. When
prompted by CMS to enter the extents, you must separate different extents by
commas or place them on different lines. To specify a range of extents in the
above example, you can enter:

dlbl file1 c (extent sys011
190 190, 570 190,1900 1520

(null line)
or --

dlbl file1 c (extent sys011
190 190
570 190
1900 1520

(null line)

Again, the first number entered for each extent represents the relative track for the
beginning of the extent and the second number indicates the number of tracks.

Specifying Multivolume Extents

11-16 VM/SP eMS User's Guide

You can define spaces that span up to nine volumes for VSAM files; all of the
volumes must be accessed and assigned when you issue the DLBL command to
define or identify the data space.

You should remember, though, that if you are using AMSERV and you do not use
the PRINT option, you must have a read/write CMS disk so that AMSERV can
write the output LISTING file.

If you a:redefining a new multivolume data space or unique. cluster, you must
specify the extents on each volume that the data is to occupy (starting track and
number of tracks), followed by the disk mode letter at which the disk is accessed
and the programmer logical unit to which the disk is assigned:

Using Tape Input and Output

access 135 b
access 136 c
access 137 d
assgn sys001 b
assgn sys002 c
assgn sys003 d
dlbl newfile b (extent sys001
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60 b sys001, 400 80 b sys001, 60 40 d sys003
2000 100 c sys002

(null line)

If you specify more than one extent on the same line, the extents must be separated
by commas; if you enter a comma at the end of a line, it is ignored. Different
extents for the same volume must be entered consecutively.

Note: In the preceding example, the extent information is for 2314 disks;
these extents are also on cylinder boundaries.

When you enter multivolume extents you can use a default mode. For example:

dlbl newfile b (extent sysOOl
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60, 400 80, 60 40 d sys003,
2000 100 c sys002

(null line)

Any extents you enter without specifying a mode letter and SYSxxx value default
to the mode and SYSxxx on the DLBL command line, in this case, the B-disk,
SYS001.

If you make any errors issuing the DLBL command or extent information, you
must re-enter the entire command sequence.

Identifying Existing Multivolume Files: When you issue a DLBL command to
identify an existing multivolume VSAM file, you must use the MUL T option of the
DLBL command:

dlbl old b1 dsn ? (sys002 mult
DMSDLB220R ENTER DATA SET NAME:
dostest.file
DMSDLB330R ENTER VOLUME SPECIFICATIONS:
c sys004, d sys003
e sys007

(null line)

When you enter the DLBL command you should specify the mode letter and logical
unit for the first volume on the command line. When you enter the MULT option
you are prompted to enter additional specifications for the remaining extents. In
the preceding example, the data set has extents on disks accessed as B-, C-, D-,
and E-disks.

If you are using AMSERV for a function that requires tape input and/or output,
you must have the tape(s) attached to your virtual machine. The valid addresses
for tapes are 181, 182, 183, and 184. When referring to tapes, you can also refer
to them using their CMS symbolic names TAP1, TAP2, TAP3, and TAP4.

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-17

11-18 VM/SP eMS User's Guide

For AMSERV functions that use tape input/output, the TLBL control statement is
simulated by building a dummy DLBL containing a user-supplied ddname
(filename). CMS does not read tape labels and does not recognize tape data set
names.

When you invoke the AMSERV command, you must use the TAPIN or TAPOUT
option to specify the tape device being used:

amserv export (tapout 181

In this example, the output from the AMSERV control statements in a file named
EXPORT goes to a tape at virtual address 181. CMS prompts you to enter the
ddname:

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:

After you enter the ddname specified on the FILE parameter in the AMSERV file
and press the carriage return, the AMSERV command executes.

AMSERV opens all tape files as standard labelled tapes or non-labelled tapes. If
you are using standard labelled tapes, you need to specify a LABELDEF command
with AMSERV. The LABELDEF command is the CMS/DOS equivalent of VSE
TLB control statement. The LABELDEF command is used to specify information
in VOLI and HDRllabels on the tape. See the description of the LABELDEF
command in Chapter 6, "Using Real Printers, Punches, Readers, and Tapes" for
more information on this command.

You should use the same name for the filename on your LABELDEF command as
you do for the ddname you enter in reply to message DMSAMS367R (the ddname
specified on the FILE parameter in the AMSERV file). However, the LABELDEF
command must be issued before the AMSERV command. The following sequence
of commands might be used when you have standard labelled tape output.

assgn sys005 tap1
tape rew (181
assgn syscat e
assgn sys006 e
labeldef catout fid catfile volid amserv
dlbl ijsysct e dsn mastcat (syscat vsam
dlbl catin e dsn file (sys006 vsam
amserv repro (tapout 181

DMSAMS367R ENTER TAPE OUTPUT DDNAMES

catout

Note: If you do not care what is written in a tape output label or do not want input
labels checked, you can specify a LABELDEF with no parameters other than
filename. When you enter:

labeldef intape

for an input tape with ddname INT APE, the standard labels on the tape to be
skipped without any checking. A similar statement for output writes tape labels
with default values (see the description of the LABELDEF command in Chapter
6, "Using Real Printers, Punches, Readers, and Tapes" on page 6-1.)

If you use non-labelled tapes, LABELDEF is not required.

Reading VSAM Tape FUes

When you create a tape in eMS using AMSERV, eMS writes a tape mark
preceding each output file that it writes. When the same tape is read using
AMSERV under eMS, HDRI and VOLllabels are checked using the
LABELDEF command you provide. If you read this tape in a real VSE system,
you should use a TLBL card instead of the LABELDEF command.

Similarly, when you create a tape under a VSE system using access method
services, if the tape is created with standard labels, eMS AMSERV has no
difficulty reading it.

The only time you should worry about positioning a tape created by AMSERV is
when you want to read the tape using a method other than AMSERV, for example,
the MOVEFILE command. Then, you must forward space the tape past the label,
using the eMS TAPE command before you can read it.

Defining OS Input and Output Files

Note: This information is for OS/VS VSAM users only. VSE/VSAM users
should refer to "Defining DOS Input and Output Files" for information on defining
files for use with VSAM.

The OS/VS VSAM user should bear in mind that eMS uses VSE/VSAM to
manipulate VSAM files. The VSAM and AMS statements that can be used are
described in the publication Using VSE/VSAM Commands and Macros.

In addition, there are certain incompatibilities between VSE/VSAM and OS/VS
VSAM. For a description of these incompatibilities, refer to the VSE/VSAM
General Information Manual.

If you are going to use access method services to manipulate VSAM or SAM files
or you are going to execute VSAM programs under eMS, use the DLBL command
to define the input and output files. The basic format of the DLBL command is:

DLBL ddname filemode DSN datasetname (options

where ddname corresponds to the FILE parameter in the AMSERV file and
datasetname corresponds to the entry name of the VSAM file, that is, the name
specified in the NAME parameter of an access method services control statement.

If you are using a eMS file for AMSERV input or output, use the eMS operand
and enter eMS file identifiers as follows:

dlbl mine a ems out file1 (vsam

The maximum length allowed for ddnames under eMS VSAM is seven characters.
This means that if you have assigned eight-character ddnames (or filenames) to
files in your programs, only the first seven characters of each ddname are used. So,
if a program refers to the ddname OUTPUTDD, you should issue the DLBL
command for a ddname of OUTPUTD. Since you can encounter problems with a
program that contains ddnames with the same first seven characters, you should
recompile those programs using seven-character ddnames.

There are several options you can use when issuing the DLBL command to define
VSAM input and output files. These are:

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-19

• VSAM, which you must use to indicate that the file is a VSAM file.

Note: You do not have to use the VSAM option to identify a file as a VSAM
file if you are using any of the other options listed here, since they imply that
the file is a VSAM file. In addition, the ddnames (filenames) IJSYSCT and
USYSUC also indicate that the file being defined is a VSAM file.

• EXTENT, which -you can use when you are defining a catalog or a VSAM data
space; you are prompted to enter the volume information.

• MULT, whichyou must use in order to access a multivolume VSAM file; you
are prompted to enter the extent information.

• CAT, which you can use to identify a catalog which contains the entry for the
VSAM file you are defining.

• BUFSP, which you can use to specify the size of the buffers VSAM should use
during program execution.

Allocating Extents on OS Disks and Minidisks

11-20 VM/SP CMSUser's Guide

When you use access method services to manipulate VSAM files under OS, you do
not have to worry about allocating the real cylinders and tracks to contain the files.
You can, however, use CMS commands to indicate which cylinders and tracks
should contain particular VSAM spaces when you use the DEFINE control
statement to define space.

Extents for VSAM data spaces can be defined, in AMSERV files, in terms of
cylinders, tracks, or records. Extent information you supply to eMS when
executing AMSERV must always be in terms of tracks. When you define data
spaces or unique clusters, the extent information (number of cylinders, tracks, or
records) in the AMSERV file must match the extents you supply when you issue
the DLBL command to define the file. When you supply extent information for the
master catalog, any extents you enter in excess of those required for the catalog are
claimed by the catalog and used as data space.

eMS does not make secondary space allocation for VSAM data spaces. If you
execute an AMSERV file that specifies a secondary space allocation, CMS ignores
the parameter.

When you use the DLBL command to define VSAM data space, you can use the
EXTENT option, which indicates to eMS that you are going to enter data extents.
For example, if you enter:

dlbl space b (extent

CMS prompts you to enter the extents:

DMSDLB331R ENTER EXTENT SPECIFICATIONS:

When you enter the extents, you specify the relative track number of the first track
of the extent, followed by the number of tracks. For example, if you are allocating
an entire 2314 disk, you would enter:

20 3980
(null line)

Using VSAM Catalogs

Denning a Master Catalog

You can never write on cylinder 0, track 0; and, since VSAM data spaces must be
allocated on cylinder boundaries, you should never allocate cylinder o. Cylinder 0
is often used for the volume table of contents (VTOC) as well, so it is always best
to begin defining space with cylinder 1.

You can determine which disk extents on an OS disk or minidisk are available for
allocation by using the LISTDS command with the FREE option, which also
indicates the relative track numbers, as well as actual cylinder and head numbers.

While you are developing and testing your VSAM programs in CMS, you may find
it convenient to create and use your own master catalog, which may be on a CMS
minidisk. VSAM catalogs, like any other cluster, can be shared read-only among
several users.

You name the VSAM master catalog for your terminal session using the ddname
IJSYSCT for the DLBL command. For example, if your VSAM master catalog is
located on an OS disk you have accessed as a C-disk, you would enter:

dlbl ijsysct c dsn master catalog (perm

You must define the master catalog at the start of every terminal session. If you
are always using the same master catalog, you might include the DLBL command
you need to define it in your PROFILE EXEC:

ACCESS 555 C
DLBL IJSYSCT C DSN MASTCAT (PERM

You should use the PERM option so that you do not have to reset the master
catalog assignment after clearing previous DLBL definitions. The command:

dlbl * clear

clears all file definitions except those entered with the PERM option.

The sample DLBL command used in the preceding example is almost identical with
the one you would issue to define a mastep catalog using AMSERV. The only
difference is that you can enter the EXTENT option so that you can list the data
spaces that this master catalog is to control.

As an example, suppose that you have a 30-cylinder 3330 minidisk assigned to you
to use for testing your VSAM programs under CMS. Assuming that the minidisk is
in your directory at address 333, you should first access it:

access 333 d
D(333) R/W - as

If you formatted the minidisk yourself, you know what label you assigned it; if not,
you can find out the label assigned to the disk by issuing the CMS command:

query search

The response might be:

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-21

Defining User Catalogs

11-22 VM/SP eMS User's Guide

USR191
VSAM03
SYS109
SYS19E

191 A
333 D
190 S
19E Y/S

R/W
R/W - OS
R/O
R/O

Use the volume label VSAM03 in the MASTCAT AMSERV file:

DEFINE MASTERCATALOG -
(NAME (MASTCAT)
VOLUME (VSAM03) -
CYL (4) -
FILE (IJSYSCT)

To find out what extents on this minidisk you can allocate for VSAM, use the
LISTDS command with the FREE option:

listds d (free

The response from LISTDS might look like this:

FREES PACE INFORMATION FOR 'D' DISK:
CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 01 1 000 09 9 9
000 11 11 029 18 569 560

From this response, you can see that the VTOC is located on the first cylinder, so
you can allocate cylinders 1 through 29 for VSAM:

dlbl ijsysct d dsn mastcat (perm ext,nt
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 551

(null line)

After entering the extents, in tracks, giving the relative track number of the first
track to be allocated followed by the number of tracks, you must enter a null line to
complete the command. (A null line is required because, when you enter multiple
extents, entries may be placed on more than one line.)

Now you can issue the AMSERV command:

amserv mqstcat

A ready message with no return code indicates that the master catalog is defined.
You do not need to reissue the DLBL command in order to identify the master
catalog for additional AMSERV functions.

You can use the AMSERV command to define private catalogs and spaces for
them. The procedures for determining what space you can allocate are the same as
those outlined in the example of defining a master catalog.

To define a user catalog, you can assign any ddname you want:

DEFINE USERCATALOG -

access 199 e
listds e (free

dlbl cat1 e dsn private.cat1 (extent

amserv usercat

The file USERCAT AMSERV might contain the following:

(NAME (PRIVATE.CAT1) -
FILE (CAT1)-
CYL (4) -
VOLUME (OSVSAM)) -
CATALOG (MASTCAT)

Using a Job Catalog

dfter this AMSERV command has completed successfully you can use the catalog
PRIVATE.CATl. When you define a file cataloged in it, you identify it using the
CAT option on the DLBL command:

dlbl file2 e dsn ? (cat cat1

Or, you can define it as a job catalog.

During a terminal session, you may be referencing the same private catalog many
times. If this is the case, you can identify a job catalog by using the ddname
IJSYSUC. Then, that catalog is searched during all subsequent jobs, unless you
override it using the CAT option when you use the DLBL command to define a
file.

If you defined a user catalog (IJSYSUC) for a terminal session and you use the
AMSERV command to access a VSAM file, the user catalog takes precedence over
the master catalog. This means that for files that already exist, the job catalog is
searched. When you define a cluster, it is cataloged in the job catalog, rather than
in the master catalog, unless you use the CAT option to override it. CMS never
searches more than one VSAM catalog.

You should use the CAT option to name a catalog when the AMSERV file you are
executing references, with the CATALOG parameter, a catalog that is not defined
either as the master catalog or as a user catalog.

If you want to use additional catalogs during a terminal session, you first define
them just as you would any other VSAM file:

dlbl mycat2 f dsn private.cat2 (vsam

Then, when you enter the DLBL command for the VSAM file that is cataloged in
PRIVATE.CAT2 use the CAT option to refer to the ddname of the catalog:

dlbl input f dsn input. file (cat mycat2

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-23

Catalog Passwords

If you want to stop using a job catalog defined with the ddname IJSYSUC, you can
clear it using the CLEAR option of the DLBL command:

dlbl ijsysuc clear

or, you can assign the ddname IJSYSUC to some other catalog. If you clear the
ddname for IJSYSUC, then the master catalog becomes the job catalog.

When you define passwords for VSAM catalogs in CMS, or when you use CMS to
access VSAM catalogs-that.have passwords associated with them, you must supply
the password from· your terminal when the AMSERV command executes. The
message that you receive to prompt you for the password is the same message you
receive when you execute access method services:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

Verifying a Catalog Structure

As a CMS VSAM user (with or without DOS set ON), you can use the CMS
CATCHECK command to invoke the VSE/VSAM Catalog Check Service Aid to
verify a complete catalog structure. If you do not specify a catalog name with the
CA TCHECK command, the catalog specified with the DLBL command is used.
CATCHECK produces a print file containing the catalog analysis. For example,
issuing:

dlbl ijsysuc f dsn private.cat1 (vsam

and

cat check

results in a print file containing the VSE/VSAM Catalog Check output.

If you had issued only a DLBL for the master catalog, issuing:

catcheck private.cat1

produces the same result.

Defining and Allocating Space for VSAM files

11-24 VM/SP eMS User's Guide

You can use CMS AMSERV to allocate additional data spaces for VSAM. To use
the DEFINE SPACE control statement, you must have defined either the master
catalog or a user catalog which will control the space, and you must have the
volume or volumes on which the space is to be allocated mounted and accessed.

For example, suppose you have an OS 3330 disk attached to your virtual machine
at virtual address 255. After accessing the disk and determining the free space on
it, you could create a file named SPACE AMSERV:

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456)) -
CATALOG (PRIVATE.CAT2 CAT2)

Specifying Multiple Extents

To execute this AMSERV file, you must define PRIV ATE. CA T2 using the ddname
CAT2, and then define the ddname for the file:

access 255 c
dlbl cat2 c dsn private.cat2 (vsam
dlbl file1 c (extent cat cat2

You do not need to enter a data set name to define the space. When CMS prompts
you for the extents of the space, you can enter the extent specifications:

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
190 1900

When you define space for VSAM, you should be sure that the VOLUMES
parameter and the space allocation parameter (whether CYLINDER, TRACKS,
BLOCKS, or RECORDS) in the AMSERV file agree with the track information
you provide in the DLBL command.

When you are specifying extents for a master catalog, data space, or unique file,
you can specify up to 16 extents on a volume for a particular space. When
prompted by CMS for the extents, you must separate the different extents by
commas, or place them on different lines. To specify a range of extents in the
above example, you could enter:

dlbl file1 c (extent
190 190, 570 190, 1900 1520

(null line)
or --

dlbl file1 c (extent
190 190
570 190
1900 1520

(null line)

Again, the first number entered for each extent represents the relative track for the
beginning of the extent and the second nU"mber indicates the number of tracks.

Specifying Multivolume Extents

You can define spaces that span up to nine volumes for VSAM files; all of the
volumes must be accessed and assigned when you issue the DLBL command to
define or identify the data space.

You should remember, though, that if you are using AMSERV and you do not use
the PRINT option, you must have a read/write CMS disk so that AMSERV can
write the output LISTING file.

If you are defining a new.multivolume data space or unique cluster, you must
specify the extents on each volume that the data is to occupy (starting track and
number of tracks), followed by the disk mode letter at which the disk is assigned:

Chapter 11. Using Access Method Servic(;~, and VSAM Under CMS and CMS/DOS 11-25

access 135 b
access 136 c
access 137 d
dlbl newfile b (extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60 b, 400 80 b, 60 40 d,
2000 100 c

(null line)

If you enter more than one extent on the same line, the extents must be separated
by commas; if you enter a comma at the end of a line, it is ignored. Different
extents for the same volume must be entered consecutively.

Note: In this example, the extent information is for 2314 disks and that
these extents are also on cylinder boundaries.

When you enter multivolume extents, you do not have to enter a mode letter for
those extents on the disk identified in the DLBL command. For the extents on disk
B in the above example, you could enter:

dlbl newfile b (extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 400 80, 60, 60 40 d
2000 100 c

(null line)

If you make any errors issuing the DLBL command or extent information, you
must reissue the entire command sequence.

Identifying Existing Multivolume Files:

Using Tape Input and Output

11-26 VM/SP eMS User's Guide

When you issue a DLBL command to identify an existing multivolume VSAM file,
you must use the MULT option of the DLBL command sequence:

dlbl old b1 dsn ? (mult
DMSDLB220R ENTER DATASET NAME:
vsamtest.file
DMSDLB330R ENTER VOLUME SPECIFICATIONS:
c, d
e

(null line)

When you enter the DLBL command you should specify the mode letter for the
first disk volume on the command line. When you enter the MUL T option you are
prompted to enter additional specifications for the remaining extents. In the above
example, the data set has extents on disks accessed as B-, C-, D-, and E-disks.

If you are using AMSERV for a function that requires tape input and/or output,
you must have the tape(s) attached to your virtual machine. The valid addresses
for tapes are 181, 182, 183, and 184. When referring to tapes, you can also refer
to them using their CMS symbolic names TAP 1 , TAP2, TAP3, and TAP4.

When you use AMSERV to create or read a tape, you supply the ddname for the
tape device interactively, after you issue the AMSERV command. To indicate to
AMSERV that you are using tape for input or output, you must use the TAPIN or
T APOUT option to specify the tape device being used:

labeldef tapeddfid filename ...
amserv export (tapout 181

Reading Tapes

In this example, the output from an EXPORT function is to a tape at virtual
address 181. CMS prompts you to enter the ddname:

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:

After you enter the ddname (TAPEDD in this example) for the tape file, AMSERV
begins execution.

AMSERV in CMS assumes that tape volumes used for input and/or output have
IBM standard tape labels, i.e., VOLl, HDRl, etc. The user can override this
default by indicating to AMSERV via Access Method Services control statements
to use non label tapes. If standard label tapes are used the LABELDEF command
is required. The CMS/DOS routine that performs the tape open needs label
information for standard label tapes. See the description of the LABELDEF
command in Chapter 6, "Using Real Printers, Punches, Readers, and Tapes" on
page 6-1 for further information. The filename you specify on the LABELDEF
command should be the same one you use to reply to the access method service
message that requested you to supply the tape's ddnames. However, the
LABELDEF command must be issued before the AMSERV command. If you only
want the tape labels skipped, but not checked, enter a LABELDEF with no
parameters other than filename.

Standard label tapes used for input must always contain standard VOLl, HDRl,
and EOFllabels or they are rejected by CMS AMSERV. Standard label output
tapes do not need to contain VOLllabels because the user is prompted to enter a
volume serial number and have the VOLllabel written if he wants. However,
blank tapes should not be used for output because the open routine tries to read the
tape.

When you create a tape file using AMSERV under CMS, CMS writes a mark
preceding each output file. When CMS AMSERV is used to read this same file, it
automatically skips past the tape mark to read the file. If you want to read the tape
on a real OS/VS system, however, you must use the LABEL=SL as a parameter
on the data definition (DD) card for the tape. When you create a tape file using
AMSERV under CMS, CMS writes a label file preceding each output file. When
CMS AMSERV is used to read this same file, it checks the HDRI and VOLI
labels using the LABELDEF command you provide before it reads the data file. If
you want to read the tape on a real OS/VS system, however, you must use the
LABEL=SL as a parameter on the data definition (DD) card for the tape. If you
want to read the tape on a real OS/VS system, however, you must use either
LABEL=SL or LABEL = (2,NL) as a parameter on the data definition (DD) card
for the tape.

If you are creating a tape under OS /VS access method services to be read by CMS
AMSERV, you must be sure to create the tape using standard labels so that CMS
can read it properly. CMS will not be able to read a tape created with
LABEL=(,NL) on the DD card.

For CMS to read this tape for any other purpose (for example, to use the
MOVEFILE command to copy it), you must remember to forward space the file
past the tape mark before beginning to read it.

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-27

Using AMSERV Under eMS

This section provides examples of AMSERV functions executed under CMS. The
examples are applicable to both the CMS (OS) and CMS/DOS environments. You
should be familiar with the material presented in either "Defining DOS Input and
Output Files" or "Defining OS Input and Output Files," depending on whether you
are a DOS or an OS user, respectively. For the examples shown below, command
lines and options that are required only for CMS/DOS users are shaded. OS users
should ignore these shaded entries ..

A eMS format variable file cannot be used directly as input to AMSERV functions
as a variable (V) or variable blocked (VB) file because the standard variable CMS
record does not contain the BL and RL headers needed by the variable record
modules. If these headers are not included in the record, errors will result.

All files placed on the CMS disk by AMSERV will show a RECFM of V, even if
the true format is fixed (F), fixed blocked (FB), undefined (U), variable or variable
blocked. The programmer must know the true format of the file he is trying to use
with the AMSERV command and access it properly or errors will result.

A eMS standard variable-format file can be accessed as RECFM=U to use the file
as follows:

AMSERV AI-1REPUV

The file AMREPUV AMSERV contains the following 2 cards:

REPRO INFILE (INPUT ENV(RECFM(U),BLKSZ(800),PDEV(3330»)
OUTFILE (OUTPUT ENV(RECFM(V),BLKSZ(800),RECSZ(84),PDEV(3330»)

The input file can be any CMS file with LRECL 800 or less. The output file will
be a true variable file that can be used with AMSERV.

Using the DEFINE and DELETE Functions

11-28 VM/SP eMS User's Guide

When you use the DEFINE and DELETE control statements of AMSERV, you do
not need to specify the DSN parameter on the DLBL command:

1$.@§J)t:::::i:w:ip:"~::Ij#:
dlbl ij sysct c (perm extent :::11:,,:111::

If the above commands are executed prior to an AMSERV command to define a
master catalog, the DEFINE will be successful as long as you have assigned a data
set name using the NAME parameter in the AMSERV file. The same is true when
you define clusters, or when you use the DELETE function to delete a cluster,
space, or catalog.

When you do not specify a data set name, AMSERV obtains the name from the
AMSERV file. In the case of defining or deleting space, no data set name is
needed; the FILE parameter corresponding to the ddname is all that is necessary,
and AMSERV assigns a default data set name to the space.

When you define space on a minidisk using AMSERV, CMS does not check the
extents you specify to see whether they are greater than the number of cylinders
available. As long as the starting cylinder is a valid cylinder number and the

extents you specify are on cylinder boundaries, the DEFINE function completes
successfully. However, you receive an error message when you use an AMSERV
function that tries to use this space.

Defining a SuballOCQted Cluster

Defining a Unique Cluster

To define a cluster for VSAM space that has already been allocated, you need:

1. An AMSERV file containing the control statements necessary for defining the
cluster, and

2. The master catalog (and, perhaps, user catalog) volume, which will point to the
cluster.

The volume on which the cluster is to reside does not have to be online when you
define a suballocated cluster.

For example, the file CLUSTER AMSERV contains the following:

DEFINE CLUSTER (NAME (BOOK. LIST) -
VOLUMES (123456) -
TRACKS (40) -
KEYS (14,0) RECORDSIZE (120,132))

DATA (NAME (BOOK.LIST.DATA)) -
INDEX (NAME (BOOK.LIST.INDEX))

To execute this file, you would need to enter the following command sequence
(assuming that the master catalog, on volume 123456, is in your virtual machine at
address 310):

For a unique cluster (one defined with the UNIQUE attribute), you must define the
space for the cluster at the same time you define its name and attributes; thus the
volume or volumes on which the cluster is to reside must be mounted and accessed
when you execute the AMSERV command. You can supply extent information for
the cluster's data and index portions separately.

To execute an AMSERV file named UNIQUE which contains the following (the
ellipses indicate that the AMSERV file is not complete):

DEFINE CLUSTER -
(NAME (PAYROLL)) -

DATA (FILE (UDATA) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (40) -
. ..) -

INDEX (FILE (UINDEX)) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (10) -
. ..)

the command sequence should be:

Chapter 11. Using Access Method Services and VSAM Under CMS and eMS/DOS 11--29

Deleting Clusters, Spaces, and Catalogs

When you use AMSERV to delete a VSAM cluster, the volume containing the
cluster does not have to be accessed unless the volume also contains the catalog in
which the cluster is defined. In the case of data spaces and user catalogs or the
master catalog, the volume(s) must be mounted and accessed in order to delete the
space.

When you delete a cluster or a catalog, you do not need to use the DLBL
command, except to define the master catalog; AMSERV can obtain the necessary
file information from the AMSERV file.

You should be particularly careful when you are using temporary disks with
AMSERV, that you have not cataloged a temporary data space or cluster in a
permanent catalog. You will not be able to delete the space or cluster from the
catalog.

Using the REPRO, IMPORT, and EXPORT (or EXPORTRA/IMPORTRA) functions

11-30 VM/SP eMS User's Guide

You can manipulate VSAM files in CMS with the REPRO, IMPORT, and
EXPORT functions of AMSERV. You can create VSAM files from sequential
tape or disk files (on OS, DOS, or CMS disks) using the REPRO function. Using
REPRO, you can also copy VSAM files into CMS disk files or onto tapes. For the
IMPORT /EXPORT process, you have the option (for smaller files) of exporting
VSAM files to CMS disks, as well as to tapes.

You cannot, however, use the EXPORT function to write files onto OS or DOS
disks. Nor can you use the REPRO function to copy ISAM (indexed sequential)
files into VSAM data sets, since CMS cannot read ISAM files.

When creating a VSAM file from a non-VSAM disk file, the device track size must
be the maximum BLOCKSIZE in the INFILE statement. AMSERV expects a
DOS or OS file as input and will not open a disk file when the BLOCKSIZE
specified is greater than the track capacity of the disk device being used.

You cannot use the ERASE or PURGE options of the EXPORT command if you
are exporting a VSAM file from a read-only disk. The export operation succeeds,
but the listing indicates an error code 184, meaning that the erase function could
not be performed.

You should not use an EXPORT DISCONNECT function from a CMS minidisk
and try to perform an IMPORT CONNECT function for that data set onto an OS
system. OS incorrectly rebuilds the data set control block (DSCB) that indicates
how much space is available.

The AMSERV file below gives an example of using the REPRO function to copy a
CMS sequential file into a VSAM file. The CMS input file must be sorted in

alphameric sequence before it can be copied into the VSAM file, which is a keyed
sequential data set (KSDS). The VSAM cluster, NAME.LIST, is defined in an
AMSERV file named PAYROLL:

DEFINE CLUSTER (NAME (NAME. LIST) -
VOLUMES (rMSDEV) -
TRACKS (20) -
KEYS (14,0) -
RECORDSIZE (120,132)) -

DATA (NAME (NAME.LIST.DATA)) -
INDEX (NAME (NAME.LIST.INDEX))

To sort the CMS filet create the cluster and copy the CMS file into it, use the
following commands:

sort name list a name sort a
DMSSRT604R ENTER SORT FIELDS:
1 14
access 135 c

:"!'I:f:~:!~:~!~::::::::~::: (perm :::iM~il~:::
amserv payroll
:1,:1[IR:::::::I:&:I:9,:9,:9:::1,,:::
dlbl sort a cms name sort (~:II:Q:gl.:::
!SiJiiti#!{it#i:g!II{?if
dlbl name c dsn name list Cil;l:l!Q.ijI vsam
amserv repro

The file REPRO AMSERV contains:

REPRO INFILE (SORT
ENV (RECORDFORMAT (F) -

BLOCKSIZE (80) -
PDEV (3330))) -

OUTFILE (NAME)

When you use the REPRO, IMPORT, or EXPORT functions with tape files, you
must remember to use the TAPIN and TAP OUT options of the AMSERV
command. These options perform two functions: they allow you to specify the
device address of the tape, and they notify AMSERV to prompt you to enter a
ddname.

In the example below, a VSAM file is being exported to a tape. The file,
TEXPORT AMSERV, contains:

EXPORT NAME.LIST
INFILE (NAME) -
OUTFILE (TAPE ENV (PDEV (2400)))

To execute this AMSERV, you enter the commands as follows:

:"!'P:~:!!!:~:~iI~:\I~IP:li:::: vsam
amserv texport (tapout 181
DMSAMS367R ENTER TAPE OUTPUT DDNAMES:
tape

The fid, volid, and exdte parameters on LABELDEF are only examples; you can
substitute any value you want for them on your tape label.

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-31

Writing EXECs for AMSERV and VSAM

11-32 VM/SP eMS User's Guide

You may find it convenient to use EXEC procedures for most of your AMSERV
functions, as well as setting up input and output files for program execution, and
executing your VSAM programs. If, for example, a particular AMSERV function
requires several disks and a number of DLBL statements, you can place all of the
required commands in an EXEC file. For example, if the file below is named
SETUP EXEC:

ACCESS 135 B
ACCESS 136 C
ACCESS 137 D
ACCESS 300 G

mE(PERM~
DLBL FILE 1 B DSN FIRST FILE (VSAM i!!!!~ill!~:IWi
itisimII\i:S¥SiOI:I!:!ifd9
DLBL FILE2 C DSN SECOND FILE (VSAM :!!$.¥SI,I:I!!:
!1S.!SG.NI!!!sx$.p:g!I:::::!])']
DLBL FILE3 D DSN THIRD FILE (VSAM :\:::I~liQI(~!
AMSERV MULTFILE

to invoke this sequence of commands, all you have to enter is the name of the
EXEC:

setup

If you place, at the beginning of the EXEC file, the EXEC control statement:

&ERROR &EXIT &RETCODE

then, you can be sure that the AMSERV command does not execute unless all of
the prior commands completed successfully.

For those AMSERV functions that issue response messages, you can use the
&STACK EXEC control statement. For example:

&ERROR &EXIT &RETCODE
ACCESS 305 D
:1$.:aMNt!!!liab.m!1tf!!!:PJ!!
DLBL OUTPUT D (VSAM !i!il'¥I!~!I!~:!::
LABELDEF TAPE FID FILE1
&ERROR &CONTINUE
&STACK TAPE
AMSERV TIMPORT (TAPIN 181
&IF &RETCODE NE 0 TYPE TIMPORT LISTING
TAPE REW
&EXIT 0

When theAMSERV command in the EXEC is executed, the request for the tape
ddname is satisfied immediately, by the response stacked with the &STACK
statement.

If you are executing a command that accepts multiple response lines, you have to
stack a null line as follows:

&STACK C :::1.11.:9!;!1:, D Illi§!9.1~;tl!:!
&STACK
DLBL MULTFILE B (MULT ::!II;!II:)I::::

Note: You can use the &BEGST ACK control statement to stack a series of
responses in an EXEC, but you must use &ST ACK to stack a null line.

\ VSE/VSAM Macros

The VSE/VSAM macros and their options are supported for use in assembler
language programs under CMS/DOS. The VSE/VSAM macros are:

ACB
BLDVRP
DLVRP
ENDREQ
ERASE

EXLST
GENCB
MODCB
POINT
RPL

SHOWCAT
SHOWCB
TCLOSE
TESTCB
WRTBFR

All options are supported with the exception of "AM=VTAM," which is not
supported on any of the macros.

The EXLST EXCP AD exit may be specified but will never be taken in the CMS
environment. The reason is that VSE/VSAM takes this exit when it is waiting for
I/O to complete, but in the CMS environment I/O is always complete when
control is returned to VSE/VSAM.

In addition to the above list of macros, tbe following list of VSE macros normally
used with the VSAM macros are also supported. The following macros are
distributed with CMS for use with VSAM only.

VSEmacro
Supported Extent of Support

CDLOAD Only supported to the extent required for
VSAM execution.

CLOSE Supported for both VSAM and SAM.

CLOSER Supported for both VSAM and SAM.

GET Supported for both VSAM and SAM.

OPEN Supported for both VSAM and SAM.

OPENR Supported for both VSAM and SAM.

PUT Supported for both VSAM and SAM.

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-33

Obtaining the VSE/VSAM Macros

11-34 VM/SP eMS User's Guide

The "VSEVSAM EXEC" obtains the VSE/VSAM assembler language macros
from the VSE/VSAM Licensed Optional Machine Readable Materials tape, and
then creates a VSE/VSAM MACLIB. To install the VSE/VSAM assembler
language macros, do the following:

1. Mount the Licensed Optional Machine Readable Materials tape on virtual 181.

2. Load the seven VSE macros (CDLOAD, CLOSE, CLOSER, GET, OPEN,
OPENR, and PUT) from the product tape to disk (MAINT 393 is
recommended). The actual disk used is not important, as long as the macros
are available when VSEVSAM is issued.

3. Issue the CMS VSEVSAM command. Respond to the questions when you are
prompted.

The seven VSE macros can be erased from the ,djsk after the maclib is created
because the macros will be in the maclib. Once you have created the maclib, you
are able to assemble your VSAM assembler applications using the VSE/VSAM
assembler macros in the maclib. The VSEVSAM EXEC is documented in the
VM/SP Installation Guide.

OS/VSAM Macros Supported for Use in eMS

OS/VSAM Macro

ACB

CHECK

ENDREQ

ERASE

EXLST

GENCB BLK=ACB

GENCB BLK=EXLST

GENCB BLK=RPL

A subset of the OS/VSAM macros are supported for use in CMS. The macros are
at an MVS 3.8 level and they are contained in the OSVSAM MACLIB that is
shipped with VM/SP. The macros are:

ACB
CHECK
ENDREQ
ERASE

EXLST
GENCB
MODCB
POINT

RPL
SHOWCB
TESTCB

Some options of the OS/VSAM macros will not work in CMS, since OS/VSAM
macro requests are executed using VSE/VSAM code. Figure 11-1 lists the
OS/VSAM macros and the supported options.

Supported Options

AM=VSAM
BUFND=number
BUFNI=number
BUFSP=number
DDNAME=ddname
MACRF=ADR, CNV,
KEY, NDF, DIR,
SEQ, SKP, IN, OUT,
NRMIAIX, NRSIRST,
NSR, NUBIUBF,

RPL=address

RPL=address

RPL=address

AM=VSAM
EODAD=address
JRNAD=address
LERAD=address
SYNAD=address

AM=VSAM
BUFND=number
BUFNI=number
BUFSP=number
COPIES=number
DDNAME=ddname
MACRF=ADR, CNV,
KEY, NDF, DIR,
SEQ, SKP, IN, OUT,
NRMIAIX, NRSIRST,
NSR, NUBIUBF,

AM=VSAM
EODAD=address
JRNAD=address
LERAD=address

ACB=address
AM=VSAM
AREA=address
AREALEN=number
ARG=address

EXLST=address
MAREA=address
MLEN=number
PASSWD=address
STRNO=number

EXLST=address
LENGTH=number
MAREA=address
MLEN=number
PASSWD=address
STRNO=number
WAREA=address

SYNAD=address
COPIES=number
LENGTH=number
WAREA=address

ECB=address
KEYLEN=number
LENGTH=number
NXTRPL=address
RECLEN=number

Figure 11-1 (Part 1 of 4). Options of OS/VSAM Macros Supported in eMS

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-35

OS/VSAM Macro

MODCB ACB

MODCB EXLST

MODCB RPL

POINT

RPL

SHOWCB ACB

Supported Options

COPIES=nurnber
OPTCD=ADRICNVIKEY,
DIRISEQISKP, -
ARDILRD, FWDIBWD,
ASYISYN, --
NSPINUPIUPD,
KEQIKGE, FKSIGEN,
LOCIMVE,

BUFND=nurnber
BUFNI=nurnber
BUFSP=nurnber
DDNAME=ddname
MACRF=ADR, CNV,
KEY, NDF, DIR,
SEQ, SKP, IN, OUT,
NRMIAIX, NRSIRST,
NSR, NUBIUBF,

EODAD=address
JRNAD=address
LERAD=address
SYNAD=address

ACB=address
AREA=address
AREALEN=nurnber
ARG=address
OPTCD=ADRICNVIKEY,
DIRISEQISKP,
ARD I LRD, FWDIBWD,
ASYISYN,
NSPINUPIUPD,
KEQIKGE, FKSIGEN,
LOCIMVE

RPL=address

ACB=address
AM=VSAM
AREA=address
AREALEN=nurnber
OPTCD=ADRICNVIKEY,
DIRISEQISKP, -
ARDILRD, FWDIBWD,
ASYISYN, --
NSPINUPIUPD,
KEQIKGE, FKSIGEN,
LOCIMVE,

AREA=address

WAREA=nurnber

EXLST=address
MAREA=address
MLEN=address
PASSWD=address
STRNO=nurnber

ECB=address
KEYLEN=nurnber
NXTRPL=address
RECLEN=nurnber

ARG=address
ECB=address
KEYLEN=nurnber
NXTRPL=address
RECLEN=nurnber

OBJECT=DATAIINDEX

Figure 11-1 (Part 2 of 4). Options of OS/VSAM Macros Supported in eMS

11-36 VM/SP eMS User's Guide

OS/VSAM Macro

SHOWCB EXLST

SHOWCB RPL

TESTCB ACB

TESTCB EXLST

TESTCB RPL

Supported Options

FIELDS=ACBLEN,
AVSPAC, BUFND,
BUFNI, BUFNO,
BUFSP, CINV,
DDNAME, ERROR,
EXLST, FS, KEY LEN ,
LRECL, MAREA,
MLEN, NCIS, NDELR,
NEXCP, NEXT,
NINSR, NIXL,
NLOGR, NRETR,
NSSS, NUPDR,
PASSWD, RKP,
STMST, STRMAX,
STRNO
AREA=address
FIELDS=EODAD,
EXLLEN, JRNAD,
LERAD, SYNAD

AREA=address
FIELDS=ACB, AIXPC,
AREA, AREALEN,
ARG, ECB, FDBK,
FTNCD, KEYLEN,
NXTRPL, RBA,
RECLEN, RPLLEN

LENGTH=number

LENGTH=number

LENGTH=number

ERET=address LRECL=number
OBJECT=DATAIINDEX MAREA=address
ATRB=UN-Q--- MLEN=number
OFLAGS=OPEN NCIS=number
OPENOBJ=PATH I BASE IAIXNDELR=number
ACBLEN=number NEXCP=number
AVSPAC=number NEXT=number
BUFND=number NINSR=number
BUFNI=number NIXL=number
BUFNO=number NLOGR=number
BUFSP=number NRETR=number
CINV=number NSSS=number
DDNAME=ddname NUPDR=number
ERROR=number PASSWD=address
EXLST=address RKP=number
FS=number STMST=address
KEYLEN=number STRNO=number
ATRB=ESDS, KSDS, MACRF=ADR, AIX,
REPL, RRDS, SPAN, CNV, DIR, IN, KEY,
SSWD, WCK NDF, NRM, NRS,

NSR, NUB, OUT,
RST, SEQ, SKP, UBF

ERET=address
EODAD=address
JRNAD=address

ERET=address
AI XFLAG=AIXPKP
AIXPC=number
FTNCD=number
I/O=COMPLETE
ACB=address

LERAD=address
SYNAD=address
EXLLEN=number

ARG=address
ECB=address
FDBK=number
KEYLEN=number
NXTRPL=address
RBA=number

Figure 11-1 (Part 3 of 4). Options of OS/VSAM Macros Supported in eMS

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-37

OS/VSAM Macro Supported Options

AREA=address
AREALEN=number
OPTCD=ADR, ARD,
ASY, BWD, CNV,
DIR, FKS, FWD,
GEN, KEQ, KEY,
KGE, LaC, LRD,
MVE, NSP, NUP,
SEQ, SKP, SYN, UPD

RECLEN=number
RPLLEN=number

Figure 11-1 (Part 4 of 4). Options of OS/VSAM Macros Supported In eMS

11-38 VM/SP eMS User's Guide

I OS/VSAM E1'I'Or Codes

Error codes returned by VSE/VSAM in response to OPEN, CLOSE, and Data
Management Request macro errors are mapped to the appropriate OS/VSAM
error codes.

• Figure 11-2 lists the error codes returned by VSE/VSAM in response to
OPEN errors.

• Figure 11-3 on page 11-41 lists the error codes returned by VSE/VSAM in
response to CLOSE errors.

• Figure 11-4 on page 11-41 lists the error codes returned by VSE/VSAM in
response to Data Management Request macro errors.

If a VSE/VSAM error code cannot be mapped to any OS/VSAM error code, then
a CMS error message and an ABEND 35 are issued except for the cases indicated
by an "*."

CMS Error
Message or

VSE/VSAM OS/VSAM VSE/VSAivI OS/VSAM
Error Error Return Return
Code Code Code Code

2 DMSVIP779E 8 8

4 4 8 8

14 DMSVIP782E· 8 8

15 DMSVIP782E 8 8

17 DMSVIP782E 8 8

18 . DMSVIP782E 8 8

19 DMSVIP782E 8 8

32 DMSVIP782E 8 8

34 DMSVIP782E* 8 8

40 DMSVIP778E 8 8

48 168 8 8

50 DMSVIP782E 8 8

64 188 8 8

65 DMSVIP779E 8 8

66 DMSVIP782E 8 8

67 DMSVIP782E 8 8

68 168 8 8

69 DMSVIP782E 8 8

70 DMSVIP782E 8 8

71 DMSVIP782E 8 8

FIgure 11-2 (Part 1 of 3). VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-39

CMS Error
Message.or

VSE/VSAM OS/VSAM VSE/VSAM OS/VSAM
Error Error Return Return
Code Code Code Code

72 148 8 8

78 DMSVIP782E 8 8

79 DMSVIP782E 8 8

80 DMSVIP778E 8 8

92 DMSVIP779E 8 8

96 96 4 4

100 100 4 4

104 104 4 4

108 108 4 4

110 160 8 8

113 144 0 4

114 DMSVIP781E 0 4

115 DMSVIP781E 8 8

116 116 4 4

117 DMSVIP782E 8 8

118 0 0 0

128 128 8 8

132 132 8 8

136 136 8 8

144 144- 8 8

148 148 8 8

152 152 8 8

160 160 8 8

161 160 8 8

165 DMSVIP782E 8 8

166 DMSVIP782E 8 8

167 DMSVIP782E 8 8

168 168 8 8

180 180 8 8

188 DMSVIP782E 8 8

192 192 8 8

196 196 8 8

212 212 8- 8

216· 216 8 8

Figure 11-2 (Part 2 of 3). VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors

11-40 VM/SP eMS User's Guide

CMS Error
Message or

VSE/VSAM OS/VSAM VSE/VSAM OS/VSAM
Error Error Return Return
Code Code Code Code

220 220 8 8

228 228 8 8

232 232 8 8

248 DMSVIP782E 8 8

254 DMSVIP782E 8 8

255 144 8 8

Figure 11-2 (Part 3 of 3). VSE/VSAM to OS/VSAM Error and Return Code Mapping for OPEN Errors

The following table lists the VSE/VSAM to OS/VSAM error code mapping for
CLOSE errors.

CMS Error
Message or

VSE/VSAM OS/VSAM VSE/VSAM OS/VSAM
Error Error Return Return
Code Code Code Code

2 DMSVIP783E non-zero 4

4 4 non-zero 4

76 DMSVIP784 non-zero 4

136 136 non-zero 4

144 144 non-zero 4

165 DMSVIP784 non-zero 4

166 DMSVIP784 non-zero 4

167 DMSVIP784 non-zero 4

184 184 non-zero 4

188 0 non-zero 4

228 DMSVIP783 non-zero 4

252 DMSVIP784 non-zero 4

254 DMSVIP784 non-zero 4

255 148 non-zero 4

Figure 11-3. VSE/VSAM to OS/VSAM Error and Return Code Mapping for CLOSE Errors

For Data Management Request errors, all VSE/VSAM error codes are returned to
the OS/VSAM user since the VSE/VSAM and OS/VSAM error codes are
equivalent, with the following exceptions:

Chapter 11. Using Access Method Services and VSAM Under CMS and CMS/DOS 11-41

CMS Error
Message or

VSE/VSAM OS/VSAM VSE/VSAM OS/VSAM
Error Error Return Return
Code Code Code Code

32 DMSVIP785E 0 0

48 40 8 8

52 Abend 52* 8 8

56 Abend 56* 8 8

128 DMSVIP786E 8 8

208 DMSVIP786E 8 8

212 DMSVIP786E 8 8

216 DMSVIP785E 8 8

Figure 11-4. DATA Management Request En-or Return Code Mapping

11-42 VM/SP eMS User's Guide

Chapter 12. Using the CMS Batch Facility

The CMS batch facility provides a way of submitting jobs for batch processing in
CMS. You can use the CMS batch facility when:

• You have a job (like an assembly or execution) that takes a lot of time, and
you want to be able to use your terminal for other work while the
time-consuming job is being run.

• You do not have access to a terminal.

The CMS batch facility is really a virtual machine, generated and controlled by the
system operator, who logs on VM/SP using the batch use rid and invoking the
CMSBATCH command. All jobs submitted for batch processing are spooled to
the userid of this virtual machine, which executes the jobs sequentially. To use the
CMS batch facility at your location, you must ask the system operator what the
use rid of the batch virtual machine is.

Submitting Jobs to the eMS Batch Facility

Input to the Batch Machine

ID userid

Under a real OS or DOS system, jobs submitted in batch mode are controlled by
JCL specifications. Batch jobs submitted to the CMS batch facility are controlled
by the control cards IJOB, ISET, and 1*, and by CMS commands.

Any application or development program written in a language supported by
VM/SP may be executed on the batch facility virtual machine. However, there are

, restrictions on programs using certain CP and CM~ co~nds, as described later
in this section.

Input records must be in card-image format, and may be punched on real cards,
placed in a CMS file with fixed-length, 80-character records, or punched to your
virtual punch. These jobs are sent to the batch virtual machine in one of two ways:

• By reading the real punched card input into the system card reader

or

• By spooling your virtual punch to the virtual reader of the batch virtual
machine.

When you submit a real card deck to the batch machine, the first card in the deck
must be a CP ID card. The ID"Card takes the form:

where

ID must begin in card column one and be separated from userid (the batch facility
virtual machine userid) by one or more blanks.

Chapter 12. Using the CMS Batch Facility 12-1

For example, if your installation's batch virtual machine has a userid of BATCHl,
you punch the card:

ID BATCH1

and place it in front of your deck.

When you are going to submit a job using your virtual punch, you must first be sure
that your punch is spooled to the virtual reader of the batch virtual machine:

cp spool punch to batch1

Submitting Virtual Card Input to the CMS Batch Facility

The I JOB and 1* Cards

Virtual card input can be spooled to the batch machine in several ways. You may
create a CMS file that contains the input control cards and use the CMS PUNCH
command to punch the virtual cards:

punch batch jcl (noheader

When you punch a file this way, you must use the NOHEADER option of the
PUNCH command, since the CMS batch facility cannot interpret the header card
that is usually produced by the PUNCH command. As it does with cards in an
invalid format, the batch virtual machine would flush the header card.

You can use an EXEC procedure to submit input to the batch machine. From an
EXEC, you can punch one line at a time into your virtual punch, using the
&PUNCH and &BEGPUNCH EXEC control statements. When you do this, you
must remember to use the CP CLOSE command to release the spool punch file
when you are finished:

CP CLOSE PUNCH

If you are using the. EXEC to punch individual line
read by the batch virtual machine as one continuous .
remember to spool your punch accordingly:

CP SPOOL PUNCH CaNT
&PUNCH /JOB BOSWELL 999888
PUNCH BATCH JCL * (NOHEADER
CP SPOOL PUNCH NOCONT
CP CLOSE PUNCH

A IJOB card must precede each job to be executed under the batch facility. It
identifies your userid to the batch virtual machine and provides accounting
information for the system. It takes the form:

IJOB userid accntnum [jobname] [comments]

where:

userid
is your user identification, or the userid under which you want the job ·1
submitted. This parameter controls:

12-2 VM/SP eMS User's Guide

The /SET Card

1. The userid charged by the CP accounting routines for the system
resources used during a job.

2. The name and distribution code that appear on any spooled printer or
punch output.

3. The userid to whom status messages are sent while the batch machine is
executing the job.

Note: Items 1 and 2 are correct only if the directory for the userid involved
contains the accounting option.

accntnum
is your account number. This account number appears in the accounting
data generated at the end of your job. It overrides the account number in
the CP directory entry for the userid specified for this job.

jobname
is an optional parameter that specifies the name of the job being run. If you
specify a jobname, it appears as the CP spool file identification in the
filetype field. The filename field always contains CMSBATCH. See "Batch
Facility Output" below.

comments
may be any additional information you want to provide.

end of job The /* card indicates the end of a job to the batch facility. It takes the
form:

The batch facility treats all /* cards after the first as null cards. Therefore, if you
want to ensure against the previous job not having a /* end-of-job indicator, you
should precede your /JOB card with a /* card.

The /* card is also treated as·an end-of-file indicator when a file is being read from
the input stream. This is a special technique used in submitting source or data files
through the card reader and is .discussed under "A Batch EXEC for Non-CMS
Users."

The /SET card sets limits on a system's time, printing, and punching resources
during the execution of a job. It takes the form:

/SET [TIME seconds] [PRINT lines] [PUNCH cards]

where:

seconds
is a decimal value that specifies the maximum number of seconds of virtual
CPU time ajob can use.

Chapter 12. Using the CMS Batch Facility 12-3

lines
is a decimal value that specifies the maximum number of lines a job can
print.

cards
is a decimal number that specifies the maximum number of cards a job can
punch.

The default values for the batch facility are set at 32,767 seconds, printed lines,
and punched cards per job. Any new limits defined using the /SET card must be
less than these maximum settings. The system resources can be set at lesser values
than the default values by an installation's system programmer; be sure you know
the maximum installation values for batch resource limits before you use the /SET
card.

A /SET card can appear anywhere in the job following the /JOB card. The new
limits defined by the /SETcard apply only to the part of the job that follows the
/SETcard.

A job can contain up to three /SET cards (one for each operand); a /SET card
cannot be entered more than once for the same operand.

Only use /SET cards for the operands whose values you want to change from the
default; the default values are reset between jobs. A /SET card for an operand
overrides its default but does not reset the other operands.

How the Batch Facility Worb

12-4 VM/SP eMS User's Guide

The CMS batch facility, once initialized, runs continuously. When it begins
executing a job, it sends a message to the userid of the user submitting the job. If
you are logged on when the batch machine begins executing a job that you sent it,
you receive the message:

MSG FROM BATCHID: JOB 'yourjob' STARTED

When the batch machine finishes processing a job, it sends the message:

MSG FROM BATCHID: JOB'yourjob' ENDED

where yourjob is the jobname you specified on the /JOB card. Before it reads the
next job from its card reader, the batch virtual machine:

Closes all· spooling devices .and releases spool files
Resets any spooling devices identified by the CP TAG command

• Detaches any disk devices that were accessed
• Punches accounting information to the system

Reloads CMS

All of this "housekeeping" is done by the CMS batch facility so that each job that
is executed is unaffected by any previous jobs.

If a job that you sent to the batch virtual machine terminates abnormally (abends),
the batch machine sends you a message:

MSG FROM BATCHID: JOB 'yourjob' ABEND

and spools a CP storage dump of your virtual machine to the printer. The
remainder of your job is flushed.

Whenever the batch virtual machine has read and executed all of the jobs in its
reader, it waits for more input.

Preparing Jobs for Batch Execution

When you want to submit a job to the CMS batch facility for execution, you should
provide the same CMS and CP commands you would use to prepare to execute the
same job in your own virtual machine.

You must provide the batch virtual machine with read access to any disk input files
that are required for the job. You do this by supplying the LINK and ACCESS
command lines necessary. The batch virtual machine has an A-disk (195), so you
can enter commands to access your disks as read-only extensions. For example, if
you wanted the batch machine to execute a program module named LONDON on
your 291 disk, your input file might contain the following:

/JOB FISH 012345 ~ ... ~
CP LINK BOSWELL 291 291 R SECRET
ACCESS 291 B/A
LONDON

Similarly, if you are using the batch virtual machine to execute a program using
input and output files, you must supply the file definitions:

CP LINK ARDEN 391 391 n~;~
ACCESS 391 B/A ~
FILEDEF INFILE DISK VITAL STAT B
FILEDEF OUTFILE PUNCH
CP SPOOL PUNCH TO BOSWELL
LONDON

If you expect printed or punched output from your job, you may need to include
the spooling commands necessary to control the output. In the above example, the
batch machine's punch is spooled to userid BOSWELL's virtual reader.

Any output printer files produced by your job are spooled by the batch virtual
machine to the printer. These files are spooled under your userid and with the
distribution code associated with your userid, provided the userid's directory has
the accounting option set. You can change the characteristics of these output files
with the CP SPOOL command:

cp spool e class t

di2 refid=cmsbat.controlling spool files If you want output to appear under a name
other than your userid, use the FOR operand of the SPOOL command:

cp spool e for jonson

Output punch files are spooled, by default, to the real system card punch (under
your userid), unless you issue a SPOOL command in the batch job to control the
virtual card punch of the batch virtual machine.

Restrictiol&S on CP IIIId CMS Commands in Batch Jobs

The batch facility permits the use of many CP and most CMS commands. The
following CP commands can be used to control the batch virtual machine:

Chapter 12. Using the eMS Batch Facility 12-5

Batch Facility Output

12-6 VM/SP eMS User's Guide

CHANGE
CLOSE
DETACH
DUMP
DISPLAY
LINK
LOADVFCB

Notes

MSG
QUERY
REWIND
SMSG
SPOOL
STORE
TAG

1. The CHANGE, CLOSE, and SPOOL commands may not be used to affect the
virtual reader.

2. You can not use the detach commmand to detach any spooling devices or the
system or IPL disks.

3. The LINK command must be entered on one line in the format:

CP LINK userid vaddr vaddr mode password

None of the LINK command keywords· (AS, PASS, TO) are accepted. If the
disk has no password associated with it, you must enter the password as ALL.
A maximum of 26 links may be in effect at anyone time.

All CP commands in a batch job must be prefaced with the "CP" command.

Since the batch virtual machine reads input from its reader, you cannot use the
following commands or operands that affect the reader:

ASSGN SYSxxx READER (CMS/DOS only)
DISK LOAD
FILEDEF READER
READ CARD

The RDCARD macro cannot be used by jobs that run under the CMS batch
machine.

Invalid SET command operands are:

BLIP
IMPCP
INPUT
OUTPUT

PROTECT
RED TYPE
RELPAGE

All of the other CMS SET command operands can be used in a job executing in the
batch virtual machine. All forms of the CP SET command are invalid.

Note If the SET TIMER REAL command is used for the batch machine,
the timer expires every two seconds (including while batch is waiting for the
reader). To avoid this problem, use the command SET TIMER ON.

Any files that you request to have printed during your job's execution are spooled
to the real system printer under your userid, unless you have spooled it otherwise.
Once released.forprocessing, these output files are under the control of the CP
spooling facilities; if you are logged on, you can control the disposition of these
files before they are printed with the CLOSE, PURGE, ORDER, and CHANGE
commands. See the following section "Purging and Reordering Batch Jobs."

, Output files produced by the batch virtual machine are identifiable by the filename
CMSBATCH in the CP spool file name field. The spool file type field contains the
filetype JOB, unless you specified a jobname on the IJOB card. This applies to
both printer and punch output files.

In addition to your regular printed output, the CMS batch facility spools a console
sheet that contains a record of all the lines read in, and the responses, error
messages, and return codes that resulted from command or program execution.
This file is identified by a spool file name of BATCH and a spool file type of
CONSOLE.

Purging and Reordering Batch Jobs

When required, you can control the execution of batch virtual machine jobs by
purging, reordering, and restarting them; by the same token, because all the closed
printer files are queued for system output under the submitting userid, you can
change, purge, or reorder these files prior to processing on the system printer ..

To purge a job executing under the batch monitor, follow the procedure below:

1. Signal attention and enter the virtual machine environment.
2. Enter the HX (halt execution) Immediate command.
3. Disconnect the virtual machine using the CP DISCONN command.

The HX command causes the batch facility to abnormally terminate. This provides
the user with an error message and a CP dump of the batch facility virtual machine.
The batch monitor then loads itself again and starts the next job (if any).

To purge an individual input spool file that is not yet executing, issue the CP
PURGE command:

PURGE READER spoolid

In the format above, spoolid is the spool file number of the job to be purged from
the batch virtual machine's job queue. For example, the statement:

purge reader 123

would purge 123 from the batch virtual machine's job queue.

To reorder individual spool files in the batch facility's job queue, use the CP
ORDER command:

ORDER READER spoolid1 spoolid2 ...

In this format, spoolidl and spoolid2 are the assigned spool file identifications of
the jobs to be reordered.

You can determine which jobs are in the queue by using the CP QUERY
command:

query reader all

This QUERY command lists the filenames and filetypes of all the jobs in the batch
virtual machine's job queue. You can then reorder them, using the ORDER
command.

Chapter 12. Using the CMS Batch Facility 12-7

Using CMS EXEC Files for Input to the Batch Facility

12-8 VM/SP eMS User's Guide

There are a variety of ways that CMS EXEC procedures can help facilitate the
submission of jobs to the CMS batch facility. You can prepare an EXEC file that
contains all of the CMS commands you want to execute, and then pass the name of
the EXEC to the batch virtual machine. For example, consider the files COpy
JCL and COPYF EXEC:

~: (~cARBoN999999 (7 EXEC COPYF

/ * ------,--,.,-~ .. ,---.-.'.'-''' .. '.''.''''.'' '"
COPYF EXEC: COPYFILE FIRST FILE A SECOND

COPYFILE THIRD FILE A FOURTH

Then, if you enter the commands:

cp spool punch to cmsbatch

Pu~~~",eY ~~ * (noheader

the commands in the EXEC file are executed by the batch virtual machine.

You could also use a CMS EXEC to punch input to the batch virtual machine.
Using the same commands as in the example above, you might have a CMS EXEC
named BATCOPY:

CP SPOOL PUNCH TO BATCH3
&PUNCH /JOB CARBON 999999
&PUNCH COPYFILE FIRST FILE A SECOND
&PUNCH COPYFILE THIRD FILE A FOURTH
&PUNCH /*
CP CLOSE PUNCH

Then, when you enter the EXEC name:

batcopy

the input lines are punched to the batch virtual machine.

The examples above are very simple; you probably would not go to the trouble of
sending such a job to the batch virtual machine for processing. The examples do,
however, illustrate the two basic ways that you can use CMS EXEC procedures
with the batch facility:

1. Invoking a CMS EXEC procedure from a batch virtual machine

2. Using a CMS EXEC procedure to create a job stream for the batch virtual
machine

In either case, the EXECs that you use may be very simple or very complicated. In
the first instance, an EXEC might contain many steps, with control statements to
conditionally control execution, error routines, and so on.

In the second instance, you might have an EXEC that is versatile so that it can be
invoked with different arguments so as to satisfy more than one situation. For
example, if you want to create a simple CMS EXEC to send jobs to the batch
virtual machine to be assembled, it might contain:

CP SPOOL PUNCH TO BATCH3 CONT
&PUNCH /JOB ARIEL 888888
&PUNCH CP LINK ARIEL 191 391 RR LINKPASS
&PUNCH ACCESS 391 B/A
&PUNCH ASSEMBLE &1 (PRINT
&PUNCH CP SPOOL PUNCH TO ARIEL
&PUNCH PUNCH &1 TEXT A (NOHEADER
&PUNCH /*
CP SPOOL PUNCH NOCONT CLOSE

If this file were named BAT CHASM EXEC, then whenever you wanted the CMS
batch facility to assemble a source file for you, you would enter:

batchasm filename

and the batch virtual machine would assemble the source file, print the listing, and
send you a copy of the resulting TEXT file.

Sample System Procedures for Batch Execution

To extend the above example a little further, suppose you wanted to process source
files in languages other than the assembler language. You want, also, for any user
to be able to use this CMS EXEC. You might have a separate EXEC file for each
language, and an EXEC to control the submission of the job. This example shows
the controlling EXEC file BATCH and the ASSEMBLE EXEC.

Chapter 12. Using the CMS Batch Facility 12-9

l~_* .,'

*
*
*
*

THIS CMS EXEC SUBMITS ASSEMBLIES/COMPILATIONS TO CMS BATCH

- PUNCH BATCH JOB CARD;
- CALL APPROPRIATE LANGUAGE EXEC (&3) TO PUNCH EXECUTABLE COMMANDS

&CONTROL ERROR
&IF &INDEX GT 2 &SKIP 2
&TYPE CORRECT FORM IS: BATCH USER.ID FN~E FTXfE (LANGUAGE)
&EXIT 100 (0 l~.J Q)'
&ERROR &GOTO -ERR1
CP SPOOL D CONT TO BATCHCMS
&PUNCH /JOB &1 1111 &2
&PUNCH CP LINK &1 191 291 RR SECRET
&PUNCH·-ACCESS, 291 B/A
EXEC [&3) &2'\ & 1
&PUNcIny*,,/
CP SPOdL D NOCONT
CP CL08,E D
CP SPOo'L DOFF
&EXIT \
-ERR 1 &E~IT 100 ,"

-' -::-'------- '\
C ASSEMBLE'\ EXEC \~.. .,'

.----CORRECT FORM IS :(ASSEMBLE FNAME USERID

* * PUNCH COMMANDS TO:
* -'INVOKE CMS ASSEMBLER
* - RETURN TEXT DECK TO CALLER
* &CONTROL ERROR

&ERROR &GOTO -ERR2
&PUNCH GLOBAL MACLIB UPLIB CMSLIB OSMACRO
&PUNCH CP MSG &2 ASMBLING ' &1 '
&PUNCH ASSEMBLE &1 (PRINT NOTERM)
&PUNCH CP MSG &2 ASSEMBLY DONE
&PUNCH CP SPOOL D TO &2 NOCONT
&PUNCH PUNCH &1 TEXT A1 (NOHEADER)
&BEGPUNCH
CP CLOSE D
CP SPOOL DOFF
RELEASE 291
CP DETACH 291
&END
&EXIT
-ERR2 &EXIT 102

Executing the Sample CMS EXEC Procedure 1

If the above CMS EXEC procedure is invoked with the line:

12-10 VM/SP eMS User's Guide

batch fay ~~y~';l] ~:~~~'~
the BATCHCMS virtual machine's reader should contain the following statements
(in the same general form as a FIFO console .stack):

IJOB FAY 1111 PAYROLL
CP LINK FA~9~ 291 RR SECRET .. '~/f\
ACCESS 29 BIB ~ .
GLOBAL MACL UPLIB CMSLIB OSMACRO
CP MSG FAY ASMBLING ' PAYROLL '
ASSEMBLE PAYROLL (PRINT NOTERM)
CP MSG FAY ASSEMBLY DONE
CP SPOOL D TO FAY NOCONT
PUNCH PAYROLL TEXT A1 (NOHEADER)
CP CLOSE D
CP SPOOL DOFF
RELEASE 291
CP DETACH 291
1*

When the batch facility executes this job, the commands are executed as you see
them: if you are logged on, you receive, in addition to the normal messages that the
batch facility issues, those messages that are included in the EXEC.

A Batch EXEC for a Non-CMS User

\
\

" "

Many installations run the CMS batch facility for non-CMS users to submit
particular types of jobs. Usually, a series of CMS EXEC files are stored on the
system disk so that each user only needs include a card to invoke the EXEC, which
executes the correct CMS commands to process data included with the job stream.

For example, lfa_ll,Qfi-CMS user wanted to compile FORTRAN source files, the
followingBATFORTEXEC file could be stored on the system disk:

~.,

&CONTROL OFF
FILEDEF INMOVE TERM (RECFM F BLOCK 80 LRECL 80
FILEDEF OUTMOVE DISK &1 FORTRAN A1 (RECFM F LRECL 80 BLOCK 80
MOVEFILE
GLOBAL TXTLIB FORTRAN
FORTGI &1 (PRINT)
&FORTRET = &RETCODE
&IF &RETCODE NE 0 &GOTO -EXIT
PUNCH &1 TEXT A1 (NOHEADER)
-EXIT &EXIT &FORTRET

To use this EXEC, a non-CMS user might place the followin~;~a~.¢ard deck in the
system card reader: ----"."

"\ ID CMSBATCH
~/>I9Jt_,""JOEUSER 1234 JOB10

(:.~~TFORT) JOEFORT

source file

i* (end-Of3~ indicator)
1*· (end-of-(job,) indicator)

\, '--~",l

, When the batch virtual machine executes this job, it begins reading the EXEC
procedure from disk, and executes one line at a time. When it encounters the
MOVEFILE command, it begins reading the source file from its card reader (the
batch facility interprets a terminal read as a request to read from the card reader).
It continues reading until it reaches the end-of-file indicator (the /* card), and then
resumes processing the EXEC on the next line following the MOVEFILE
command line.

Chapter 12. Using the CMS Batch Facility 12-11

12-12 VM/SP eMS User's Guide

Additional functions may be added to this EXEC procedure, or others may be
written·and stored on the system disk to provide, for example, a compile, load, and
execute facility. These EXEC procedures would allow an installation to
accommodate the non-CMS users and maintain common user procedures.

Chapter 13. Debugging Your Program Using VM/SP

Preparing to Debug

When a Program Abends

Debugging is a critical part of the program development process. When you
encounter problems executing application programs or when you want to test new
lines of code, you can use a variety of CP and CMS debugging commands and
techniques to examine your program while it is executing.

You can interrupt the execution of a program to examine and change your general
registers, storage areas, or control words such as the program status word (PSW),
and then continue execution. Also, you can trace the execution of a program
closely, so you can see where branches are being taken and when supervisor calls
or I/O interruptions occur.

In many cases, you may never need to look at a dump of a program to identify a
problem.

Before beginning to debug a program, you should have a current program listing
for reference. When you use VM/SP to debug a program, you can monitor
program execution, instruction by instruction, so you must have an accurate list of
instruction addresses and addresses of program storage areas. You can obtain a
listing of your program by using the PRINT command to print the LISTING file
created by the assembler or compiler. To determine the virtual storage locations of
program entry points, use the LOAD MAP file created by the LOAD and
INCLUDE comniands. If you are a eMS/DOS user, use the linkage editor map
produced by the DOSLKED command.

If the program that you are debugging creates printed or punched output and you
will be executing the program repeatedly, you may not wish all of the output
printed or punched. You should place your printer or punch in a hold status, so
that any files spooled to these devices are not released until you specifically request
it:

cp spool printer hold
cp spool punch hold

When you are finished debugging you can use the CP QUERY command to see
what files are being held and then you can select which files you may want to purge
or release.

The most common problem you might encounter is an abnormal termination
resulting from a program interruption. When a program running in a CMS virtual
machine abnormally terminates (abends), you receive, at your terminal, the
message:

DMSITP141T exception EXCEPTION OCCURRED AT address IN ROUTINE name

and your virtual machine is returned to the CMS environment. From the message
you can determine the type of exception (program check, operation, specification,
and so on), and, often, the instruction address in your program at which the error
occurred.

Chapter 13. Debugging Your Program Using VM/SP 13-1

Sometimes this is enough information for you to correct the error in your source
program, recompile it· and attempt to execute it again.

When this information does not immediately identify the problem in your program,
you can begin debugging procedures using VM/SP. To access your program's
storage areas and registers you can enter the command:

C~
immediately after receiving the abend message. This command places your virtual
machine in the debug environment.

To check the contents of general registers 0 through 15, issue the DEBUG
subcommand:

gpr 0 15

If you want to look at only one register, enter:

gpr 3

You might also wish to check the program status word (PSW). Use the PSW
subcommand:

psw

You can examine storage areas in your program using the X subcommand:

X 201AC 20

In this example, the subcommand requests a display of 20 bytes, beginning at
location 201AC in your program. User programs executed in CMS are always
loaded beginning at location X'20000' unless you specify a different address on the
LOAD or FETCH command. To identify the virtual address of any instruction in a
program, you only need to add 20000 to the hexadecimal instruction address.

Resuming Execution After a Program Check

13-2 VM/SP eMS User's Guide

On occasion, you will be able to determine the cause of a program check and
continue the execution of your program. There are DEBUG subcommands you
can use to alter your program while it is in storage and resume execution.

If, for example, the error occurred because you had forgotten to initialize a register
to contain a zero, you could use the DEBUG subcommand SET to place a zero in
the register, and then resume execution with the GO subcommand. You can use
the GO subcommand to specify the instruction address at which you want
execution to begin:

set gpr 11 0000
go.200BO

An alternate method of specifying a starting address at which execution is to
resume is by using the SET subcommand to change the last word of the PSW:

set psw 0 000200BO
go

If your program executes successfully, you can then make the necessary changes to
your source file, recompile, and continue testing.

Using DEBUG Sub commands to Monitor Program Execution

The preceding examples did not represent a wide range of the possibilities for
DEBUG subcommands. Nor do they represent the only way to approach program
debugging. Some additional DEBUG subcommands are illustrated below. For
complete details in using these subcommands, refer to the VM / SP CMS Command
and Macro Reference.

When you prepare to debug a program with known problems, or when you are
beginning to debug a program for the first time, you might want to stop program
execution at various instructions and examine the registers, constants, buffers, and
so on. To temporarily stop program execution, use the BREAK subcommand to
set breakpoints. You should set breakpoints after you load the program into
storage, but before you begin executing it. You can set up to 16 breakpoints at one
time. For each breakpoint, you assign a value (id), and an instruction address:

load myprog
debug
break 0 20BCO
break 1 20C10
break 2 20DOO

Then, you can return to CMS and begin execution:

(\ I,' "/
'11.

When the first breakpoint in this example is encountered, you receive the messages:

DEBUG ENTERED.
BREAKPOINT 0 AT 20BCO

Then, in the debug environment, use the subcommands GPR, CSW, CAW, PSW,
and X to display registers, control words, or storage locations.

You can resume program execution with the GO subcommand:

go

If, at any time, you decide that you do not want to finish executing your program,
but want to return to the CMS environment immediately, you must use the HX
subcommand:

hx

There are three subcommands you·can use to exit from the debug environment:

1. RETURN, to return to the CMS environment when DEBUG is entered with
the DEBUG command

2. GO, to resume program execution when it has been interrupted by a
breakpoint

3. HX, to halt program execution entirely and return to the CMS environment

If you try to leave the debug environment with the wrong subcommand you receive
the message:

INCORRECT DEBUG EXIT

Chapter 13. Debugging Your Program Using VM/SP 13-3

Using Symbols with DEBUG

13-4 VM/SP eMS User's Guide

and you have to enter the proper subcommand.

To simplify the process of debugging in the CMS debug environment, you can use
the ORIGIN and DEFINE subcommands. The ORIGIN command allows you to
set ~n instruction location to serve as the base for all the addresses you specify.
For example, if you specify:

origin 20000

then, to refer to your virtual storage location 201BC, you only need to enter:

x 1bc

By setting the DEBUG origin at your program's base address, you can refer to
locations in your program by the virtual storage numbers in the listing, rather than
having to compute the actual virtual storage address each time. The current
DEBUG origin stays in effect until you set it to a different value or until you reload
CMS (with the IPL command).

You can use the DEFINE subcommand to assign symbolic names to storage
locations so that you can reference those locations by symbol, rather than by.
storage address. For example, suppose that during a DEBUG session you will
repeatedly be examining three particular storage locations labeled in your program
NAME 1 , NAME2, and NAME3. They are at locations 20EFO, 20EFA, and
20F04. Enter:

load nameprog
debug
origin 20000
define name1 EFO 10
define name2 EFA 10
define name3 F04 10
break 1 a04
return
start

When the specified breakpoint is encountered, you can examine these storage areas
by entering:

x name1
x name2
x name3

You can also refer to these symbols by name when you use the STORE
subcommand:

store name2 c4c5c3c5c1e4e5d6c9d9

The names you specify do not have to be the same as the labels in the program;
you can define any name up to eight characters.

Figure 13-1 summarizes the DEBUG subcommands.

DEBUG
Subcommand Function

BREAK Stops program execution at the specified breakpoint.

CAW Displays the contents of the channel address word.

CSW Displays the contents of the channel status word.

DEFINE Assigns a symbolic name to the virtual storage address.

DUMP Dumps the contents of specified virtual storage locations to the virtual
spooled printer.

GO Returns control to your program and starts execution at the specified
location.

GPR Displays the contents of the specified general registers.

HX Halts execution and returns to the CMS command environment.

ORIGIN Specifies the base address to be added to locations specified in other
DEBUG subcommands.

PSW Displays the contents of the old program status word.

RETURN Exits from debug environment to the CMS command environment.

SET Changes the contents of specified control words or registers.

STORE Stores up to 12 bytes of information starting at the specified virtual
storage location.

X Examines virtual storage locations.

Figure 13-1. Summary of DEBUG Subcommands

What To Do When Your Program Loops

If, when your program is executing, it seems to be in a loop, you should first verify
that it is looping, and then interrupt its execution and either

1. halt it entirely and return to the CMS environment
or

2. resume its execution at an address outside of the loop.

The first indication of a program loop may be either what seems to be an
unreasonably long processing time, or, if you have a blip character defined, an
inordinately large number of blips.

You can verify a loop by checking the PSW frequently. If the last word repeatedly
contains the same address, it is a fairly good indication that your program is in a
loop. You can check the PSW by using the Attention key to enter the CP
environment. You are notified by the message:

CP

that your virtual machine is in the CP environment. You can then use the CP
command DISPLAY to examine the PSW:

cp display psw

and then enter the command BEGIN to resume program execution:

Chapter 13. Debugging Your Program Using VM/SP 13-5

Tracing Program Activity

cp begin

If you are checking for a loop, you might enter both commands on the same line
using the logical line end:

cp display psw#begin

When you have determined that your program is in a loop, you can halt execution
using the CMS Immediate command HX. To enter this command, you must press
the Attention key once to interrupt program execution, then enter:

hx

If you want your program to continue executing at an address past the loop, you
can use the CP command BEGIN to specify the address at which you want to
continue execution:

cp begin 20cdO

Or, you could use the CP command STORE to change the instruction address in
the PSW before entering the BEGIN command:

cp store psw 0 20cdO#begin

When your program is in a loop, or when you have a program that takes an
unexpected branch, you might need to trace the execution closely to determine at
what instruction the program goes astray. There are three commands you can use
to do this.

• The PER command is a CP command that allows you to monitor different
events in a virtual machine as they occur during program execution.

• The SVCTRACE command is a CMS command which traces all SVCs
(supervisor calls) in your program.

• The TRACE command is a CP command which allows you to trace different
kinds of information, including supervisor call instructions.

Using the CP PER Command

13-6 VM/SP eMS User's Guide

The CP PER command can be used to trace:

• all instructions,
• all successful branches,
• all register alterations,
• all instructions executed in your virtual machine that alter storage.

The CP PER command has many options that allow you selectivity in choosing
which events are to be monitored. Trace output for the CP PER command is
always produced after the instruction executes. The RANGE option allows CP
PER to monitor events that occur as a result of the execution of instructions within
a specified range (or ranges). For example, if you wish to monitor all instructions
within your program, (assuming that your program is 500 bytes in length), you can
issue:

per instruct range 20000.500

There is no need to use the ADSTOP command first as is the case with CP
TRACE. Only instructions in the range 20000-204FF are monitored.

When your program has been loaded and started, you will receive information at
your terminal that might look like this:

020000 STM 90ECDOOC OODFAC CC=O

This line indicates that a STM instruction (located at address 20000) stored the
registers beginning at location OODF AC and that condition code is now O.

The CP QUERY command with the PER option can be used to determine what
events are currently being traced. For example:

query per

may result in:

1 INSTRUCT RANGE 020000-0204FF TERMINAL NORUN

If in addition to instructions, you wish to trace instructions that alter registers,
enter:

per grange 20000.500

To see which events. you are monitoring (your current traceset), enter:

query per

You will see the following:

1 INSTRUCT RANGE 020000-0204FF TERMINAL NORUN
2 GRANGE 020000-0204FF TERMINAL NORUN

If you continue program execution by entering BEGIN you will receive information
at your terminal that might look like this:

020004 BALR 05CO 000000 CC=O G12=40020006

This line indicates a BALR instruction at address 020004 changed register 12 to
40020006.

As with CP TRACE, you can specify the printer and/or run for any event.
However, CP PER has additional options that can be used with all events.

The RANGE or FROM option can be used to set up multiple instruction
address ranges. This can increase the selectivity with which instruction
execution is monitored.

The P ASS option allows you to suppress a specific number of events between
displays.

• The CMD option can be used if you want to execute CP command(s)
whenever a given event occurs.

• The STEP option can be used to permit a specified number of events to be
displayed before the CP command environment is entered.

Chapter 13. Debugging Your Program Using VM/SP 13-7

I
For more information on the CP PER comniand, see the CP Command Reference
for General Users.

Using the CP TRA CE Command

13-8 VM/SPCMS User's Guide

You can trace the following kinds of activi~y ina program using the CP TRACE
command:

• Instructions
• Branches
• Interrupts (including program, external,
• I/O and.SVC interrupts)
• I/O and channel activity

When the TRACE command executes, it traces all your virtual machine's activity;
when your program issues a supervisor call, or calls any CMS routine, the TRACE
continues.

You can make most efficient use of the TRACE 'command by starting the trace at a
specific instruction location. You should set an address stop for the location. For
example, if you are going to execute a program and you want to trace all of the
branches made, you would enter the following sequence of commands to begin
executing the program and start the trace:.

load progress
cp ads top 20004
start
ADSTOP AT 20004
cp trace branch
cp begin

Now, whenever your program executes a branch instruction, you receive
information at the terminal that might look like this:

02001E BALR 05E6 ==> 020092

This line indicates that the instruction at address 2001 E resulted in a branch to the
address 020092. When this information is displayed, your virtual machine is placed
in the. CP environment, and you must use the BEGIN command to continue
execution:

cp begin

When you locate the branch that caused the problem in your program, you should
terminate tracing activity by entering:

cp trace end

and then you can use CP commands to continue debugging or you can use the
EXTERNAL command to cause an external interruption that places your virtual
machine in the debug environment:

cp external

You receive the message:

DEBUG ENTERED.
EXTERNAL INTERRUPT

Controlling a CP Trace

Suspending Tracing

And you can use the DEBUG subcommands to investigate the status of your
program.

There are several things you can do to control the amount of information you
receive when you are using the TRACE command, and how it is received. For
example, if you do not want program execution to halt every time a trace output
message is issued, you can use the RUN option:

cp trace svc run

Then, you can halt execution by pressing the Attention key when the interruption
you are waiting for occurs. You should use this option if you do not want to halt
execution at all, but merely want to watch what is happening in your program.

Similarly, if you do not require your trace output immediately, you can specify that
it be directed to the printer, so that your terminal does not receive any information
at all:

cp trace inst printer

When you direct trace output to a printer, the trace output is mixed in with any
printed program output. If you want trace output separated from other printed
output, use the CP DEFINE command to define a second printer at a virtual
address lower than that of your printer at OOE. For example:

cp define printer 006

Then, trace output will be in a separate spool file. CMS printed output always goes
to the printer at address OOE.

When you finish tracing, use the CP CLOSE command to close the virtual printer
file:

cp close e
-- or --

cp close 006

If you want trace output at the printer and at the terminal, you can use the BOTH
option:

cp trace all both

If you are debugging a program that does a lot of I/O, or that issues many SVCs,
and you are tracing instructions or branches, you might not wish to have tracing in
effect when the supervisor or I/O routine has control. When you notice that
addresses being traced are not in your program, you can enter:

cp trace end

and then set an address stop at the location in your program that receives control
when the supervisor or I/O routine has completed:

cp adstop 20688
begin

Chapter 13. Debugging Your Program Using VM/SP 13-9

Then, when this address is encountered, you can re-enter the CP TRACE
command.

Using the SVCTRACE command

If your program issues many SVCs, you may not get all of the information you
need using the CP TRACE command. The SVCTRACE command is a CMS
command, which provides more detailed information about all SVCs in your
program, including register contents before and after the SVC, the name of the
called routine, and the location from which it was called, and the contents of the
parameter list passed to the SVC.

The SVCTRACE command has only two operands, ON and OFF, to begin and
end tracing. SVCTRACE information can be directed only to the printer, so you
do not receive trace information at the terminal.

Since the SVCTRACE command can only be entered from the CMS environment,
you must use the Immediate commands SO (suspend tracing) or HO (halt tracing)
if you want tracing to stop while a program is executing. Use the Immediate
command RO to resume tracing.

Since the CMS system is "SVC-driven," this debugging technique can be useful,
especially, when you are debugging CMS programs. For more information on
writing programs to execute in CMS, see Chapter 8, "Programming for The CMS
Environment. "

Using CP Debugging Commands

13-10 VM/SP eMS User's Guide

In addition to the CMS debugging facilities, there are CP commands that you can
use to debug your programs. These commands are:

• DISPLAY, which you can use to examine virtual storage, registers, or control
words, like the PSW

• ADSTOP, which you can use to set an instruction address stop in your program

• STORE, which you can use to change the contents of a storage location,
register, or control word

When you use the display command, you can request an EBCDIC translation of
the display by prefacing the location you want displayed with a "T."

cp display t20000.10

This command requests a display of X'10' (16) bytes beginning at location
X'20000'. The display is formatted four words to a line, with EBCDIC translation
at the left, much as you would see it in a dump.

You can also use the DISPLAY command to examine the general registers. For
example, the commands:

cp display g
cp display g1
cp display g2-S

result in displays of all the general registers, of general register 1, and of a range of
registers 2 through 5.

The DISPLAY command also displays the PSW, CAW, and CSW:

cp display psw
cp display caw
cp display csw

With the STORE command, you can change the contents of registers, storage
areas, or the PSW.

As you can see, the CMS DEBUG subcommands and the CP commands ADSTOP,
DISPLAY, and STORE, have many duplicate functions. The environment you
choose to work in, CP or debug, is a matter of personal preference. The
differences are summarized in Figure 13-2. What you should be aware of,
however, is that you should never attempt to use a combination of CP commands
and DEBUG subcommands when you are debugging a program. Since DEBUG
itself is a program, when it is running (that is, when you are in the debug
environment), the registers that CP recognizes as your virtual machine's registers
are actually the registers being used by DEBUG. DEBUG saves your program's
registers and PSW and keeps them in a special save area. Therefore, if you enter
the DEBUG and CP commands to display registers, you will see that the register
contents are different:

gpr 0 15
#cp d g

Debugging with CP After a Program Check

When a program that is executing under CMS abends because of a program check,
the DEBUG routine is in control and saves your program's registers, so that if you
want to begin debugging, you must use the DEBUG command to enter the debug
environment.

You can prevent DEBUG from gaining control when a program interruption occurs
by setting the wait bit in the program new PSW:

c~ trace prog norun

You should do this before you begin executing your program. Then, if a program
check occurs during execution, when CP tries to load the program new PSW, the
wait bit forces CP into a disabled wait state and you receive the message:

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

All of your program's registers and storage areas remain exactly as they were when
program interruption occurred. The PSW that was in effect when your program
was interrupted is in the program old PSW, at location X'28'. Use the DISPLAY
command to examine its contents:

cp display 28.8

The program new PSW, or the PSWyou see if you enter the command DISPLAY
PSW, contains the address of the DEBUG routine.

If, after using CP to examine your registers and storage areas, you can recover
from the problem, you must use the STORE command to restore the J»SW,
specifying the address of the instruction just before the one indicated at location
X'28'. For example, if the instruction address in your program is X'566' enter:

Chapter 13. Debugging Your Program Using VM/SP 13-11

Program Dumps

Debugging Modules

13-12 VM/SP eMS User's Guide

cp store psw 0 20566
cp begin

In this example, setting the first word of the PSW to 0 turns the wait bit off, so that
execution can resume.

When a program you execute under CMS abnormally terminates, you do not
automatically receive a program dump. If, after attempting to use CMS and CP to
debug interactively, you still have not discovered the problem, you may want to
obtain a dump. You might also want to obtain a dump if you find that you are
displaying large amounts of information, which is not practical on a terminal.

Depending on whether you are using CMS DEBUG or CP to do your debugging,
you can use the DUMP command to specify storage locations you want printed.
The formats of the DUMP command (CP) and the DUMP subcommand (DEBUG)
are a little different. See VM/SP CMS Command and Macro Reference for a
discussion of the DEBUG subcommand, DUMP; see VM/SP CP Command
Reference for General Users for a discussion of the CP DUMP command.

In either event, you can selectively dump portions of your virtual storage, your
entire virtual storage area, or portions of real storage. For example, in the debug
environment, to dump the virtual storage space that contains your program, you
would enter:

dump 20000 20810

The second value depends upon the size of your program.

From the CP environment, enter:

cp dump t20000-20810

The CP DUMP command allows you to request EBCDIC translation with the
hexadecimal dump. The dump produced by the DEBUG subcommand does not
provide EBCDIC translation.

You can debug nonrelocatable MODULE files (created with the GENMOD
command) in the same way you can debug object modules (TEXT files).

To load the MODULE into storage, use the LOADMOD command:

loadmod mymod
cp adstop 201CO
start

If you make any changes to a module while it is in your virtual storage area, you
can generate a new module containing your changes provided your module file
includes a load map (created with the MAP option in effect.) When you issue the
GENMOD command, the changes become a permanent part of the executable
module:

loadmod mymod
cp store 201CO 0002
genmod mymod

To debug MODULE files in this manner, you must have a listing of the program as
it existed when the module was created.

Comparison Of CP And CMS Facilities For Debugging

Function

Setting address
stops.

Dumping contents
of storage of the
printer.

Displaying
contents of storage
and control
registers at the
terminal.

Storing
information.

If you are debugging problems while running CMS, you can choose the CP or CMS
debugging tools. Refer to Figure 13-2 for a comparison of the CP and CMS
debugging tools.

CP CMS
The CP PER command can be used Can set up to 16 address stops at a
to set up multiple address stops. The time.
CP ADSTOP command set only one
address stop at a time.

The dump is printed in hexadecimal The dump is printed in hexadecimal
format with EBCDIC translation. format. The storage address of the
The storage address of the first byte first byte of each line is identified at
of each line is at the left. the left. The contents of general and

floating-point registers are printed at
the beginning of the dump.

The display is typed in hexadecimal The CMS commands do not display
format with EBCDIC translation. storage key, floating-point registers,
The CP command displays storage or control registers as the CP
keys, floating-point registers, The command does.
display is typed in hexadecimal
format.

The amount of information stored by The CMS command stores up to 12
the CP command is limited only by bytes of information. CMS stores
the length of the input line. The data in the general registers, but not
information can be fullword aligned in the floating-point or control
when stored. CP stores data in the registers. CMS stores data in the
floating-point and control registers, as PSW, CAW, and CSW.
well as in general registers. CP stores
data in the PSW, but not in the CA W
or CSW. However, data can be
stored in the CA W or CSW by
specifying the hardware address in the
STORE command.

Figure 13-2 (Part 1 of 2). Comparison of CP and CMS Facilities for Debugging

Chapter 13. Debugging Your Program Using VM/SP 13-13

Function CP CMS
Tracing CP PER provides increased selectivity CMS traces all SVC interruptions.
Information in tracing the execution of CMS displays the contents of general

instructions that: and floating-point registers before
and after a routine is called. The

• cause successful branches parameter list is recorded before a
• alter specific storage locations routine is called.
• alter specific general registers
• are fetched and executed

CP TRACE traces:

• All interruptions, instructions and
branches.

• SVC interruptions
• 110 interruptions
• Program Interruptions
• External interruptions
• Privileged instructions
• All user 110 operations
• Virtual and real CCW's
• All instructions

The CP tracing is interactive. You
can stop it and display other fields.

Figure 13-2 (Part 2 of 2). Comparison of CP and CMS Facilities for Debugging

What Your Virtual Machine Storage Looks Like

13-14 VM/SP eMS User's Guide

Figure 13-3 illustrates a simplified CMS storage map. The portion of storage that
is of most concern to you is the user program area, since that is where your
programs are loaded and executed. The user program area and some of the other
areas of storage shown in the figure are discussed below in general terms.

SSTAT
YSTAT

CMS NUCLEUS

X'MEG'

(SHARED)

~ __ ~'X'-X'70000'

Loader Tables

User Program Area

Nucleus Free Storage

Transient Program Area

User Free Storage

System Control Blocks, Pointers, Flags

Figure 13-3. SimpUfied eMS Storage Map

X'n'
(where n = your
virtual machine
storage size)

X'2000Q'

X'1000Q'

X'EOOO'

X'5000'

X'O'

When you issue a LOAD command (for OS or CMS programs) or a FETCH
command (for DOS programs), and you do not specify the ORIGIN option, the
first, or only, program you load is loaded at location X'20000', the beginning of the
user program area.

The upper limit, or maximum size, of the user program area is determined by the
storage size of your virtual machine. You can find out how large your virtual
machine is by using the CP QUERY command:

cp query virtual storage

If you need to increase the size of your virtual machine, then you must use the CP
command DEFINE. For example:

cp define storage 1024k

increases the size of your virtual machine to l024K bytes. If you are in the CMS
environment when you enter this command, you receive a message like:

STORAGE = 01024K
DMKDSP450W CP ENTERED; DISABLED WAIT PSW '00020000 00000000'

and you must reload CMS with the IPL command before you can continue.

You might need to redefine your virtual machine to a larger size if you execute a
program that issues many requests for free storage, with the OS GETMAIN or
VSE GETVIS macros. eMS allocates this storage from the user program area.

Chapter 13. Debugging Your Program Using VM/SP 13-15

The loader tables, usually located at the top of the user's virtual storage, are used
by the CMS loader to point to programs that have been loaded. You can change
the size of the CMS loader tables the CMSSET LDRTBLS command. If you use
the SET LDRTBLS command, you s~ould issue it immediately after you IPL CMS.

The transient program area is used for loading and executing disk-resident CMS
MODULE files that have been created using the ORIGIN TRANS option of the
LOAD command, followed by the GENMOD command. For more information on
CMS MODULE files and the transient area, see "Executing Program Modules" in
Chapter 8, "Programming for The CMS Environment" on page 8-1.

Sharet/ant/ Nonshared Systems

The areas in storage labeledin Figure 13-3 as the CMS nucleus and the DCSS are
system programs that are loaded by various types of requests. When you enter the
command:

cp ipl ems

the area shown as the eMS nucleus is loaded with the CMS system, which is
known to CP by its saved name, eMS. This saved system is a copy of the CMS
system that is available for many users to share. When you are using CMS, you
share it with other users who have also issued the IPL command to load the saved
CMS system. By having many users share the same system, CP can manage system
resources more efficiently.

Under some circumstances, you may need to load the CMS system into your virtual
machine by entering the IPL command as follows:

cp ipl 190

This IPL command loads the CMS system by referring to its virtual address, which
in most installations is 190. The copy of eMS you load this way is nonshared; it is
your own copy, but it is the same system, functionally, as the saved system CMS.

Prior to issuing the command 'ipl 190', you must define the size of your virtual
machine so that it exceeds the end of the eMS nucleus. This is so that the nucleus
can be loaded into your virtual machine.

Some of the CP and CMS debugging commands do not allow you to trace or store
information that is contained in shared areas of your virtual machine. For example,
if you have entered the command:

cp trace inst

to trace instructions in your virtual machine, some of the instructions may be
located in the CMS nucleus. If you have a shared copy of CMS, you receive a
message like:

DMKATS181E SHARED SYSTEM CMS REPLACED WITH NONSHARED COPY

and CP loads a copy of eMS for you that you do not share with other users.

Discontiguous Saved Segments (DeSS)

13-16 VM/SPCMS User's Guide

Some· CMS routines and programs are stored on disks and loaded into storage as
needed. These segments include CMS/DOS, VSE SAM, VSAM, and Access
Method Services. Beyond the end of your virtual machine address space is an area

of storage into which these segments are loaded when you need them. Since this
area is not contiguous with your virtual storage, the segments that are loaded in this
area are called discontiguous saved segments.

These segments :are loaded only when you need them, and are released from the
end of your virtual machine when you are through using them. Like the CMS
system, they are saved systems and can be shared by many users. The segments
are named CMSDOS (for CMS/DOS), CMSBAM (for VSE SAM interfaces),
CMSVSAM (for VSAM interfaces), and CMSAMS (for access method services
interfaces). These names are the defaults; they can be changed by the installation.

You can specifically request a nonshared copy of a segment by loading the named
system by volume rather than by name. If you do not do this before altering a
shared segment (unless with the ADSTOP, TRACE, or STORE CP commands),
CP issues the message DMKVMA456W and places you in console function mode.
For additional information on saved systems, discontiguous saved segments, and
CMS virtual storage, see the VM/SP System Programmer's Guide.

Chapter 13. Debugging Your Program Using VM/SP 13-17

13-18 VM/SP eMS User's Guide

Part 3: Learning to use EXECs

Just as important as the CMS editors are the CMS facilities known as the System
Product interpreter, EXEC 2 and CMS EXEC processors or interpreters. Using
EXEC files, you can execute many commands and programs by entering a single
command line from your terminal; in effect, this is like writing your own CMS
commands.

In this part, the EXEC facilities are described in general-terms to acquaint you with
the expressions used in EXEC files and the basic way that EXECs function.

"Chapter 14. Introduction to the EXEC Processors" presents a survey of the basic
characteristics and functions of EXEC facilities available to you.

"Chapter 15. Creating System Product Interpreter EXECs" describes how to
create and invoke System Product interpreter EXECs. Sample EXECs are provided
for you to try.

"Chapter 16. Creating a PROFILE EXEC" describes how you can tailor your
virtual machine.

"Chapter 17. Exchanging Data Between Programs through the Stack." .

"Chapter 18. CMS Commands Used Along With EXECs"

Part 3: Learning to use EXECs P3-1

P3-2 VM/SP eMS User's Guide

I Chapter 14. Introduction to the EXEC Processors

Three EXEC processors are available:

• System Product interpreter
• EXEC 2
• CMSEXEC

The System Product interpreter handles System Product interpreter programs,
which are written in the Restructured Extended Executor (REXX) language. The
EXEC 2 processor handles EXEC 2 programs. The CMS EXEC processor
handles CMS EXEC programs. EXEC 2 programs and processing are similar to
those of the CMS EXEC. The System Product interpreter programs are not similar
to those of EXEC 2 or CMS EXEC.

The System Product interpreter

The System Product interpreter is an interpretive command and macro processor.
It coexists with the CMS EXEC and EXEC 2 processors. The System Product
interpreter is functionally a superset of CMS EXEC and EXEC 2, but it uses a
completely different language and syntax. There is no compatibility between
System Product interpreter programs and those of CMS EXEC or EXEC 2.

VM/SP differentiates System Product interpreter programs from CMS EXEC or
EXEC 2 programs by their first statement. The first statement of every System
Product interpreter program must be a comment. A comment begins with a / *,
and ends with an * /, with anything you want in between. For example:

/* This is a comment. */

The System Product interpreter functions are easy to learn and use. They use a
general-purpose, high-level language called REXX, much like that used by PL/I
and other high-level programming languages. REXX instructions use structured
programming concepts like IF/THEN/ELSE, SELECT, DO WHILE, etc, which
allow you to write programs while using words much like those you use to think
and communicate.

Other features of the System Product interpreter and the REXX language are:

• It has a number of useful built-in functions you can use in your programs.

• Programs may be written in mixed case with free form layout (which makes
them easier to read and follow).

• It has extensive mathematical capabilities (you can even use it as a desk
calculator if you wish).

• There is no limit (except the user's virtual storage size) to the length of
manipulated data.

• It is easy to find syntax errors in a program. The System Product interpreter
executes programs line-by-line and word-by-word, without translating them to
another form (no compiling). Thus, when there's a syntax error, the place
where it occurred is clearly indicated.

Chapter 14. Introduction to the EXEC Processors 14-1

The EXEC 2 Processor

• You can use the TRACE instruction to' see how the System Product interpreter
is interpreting a particular instruction. This should help you in debugging.

The following books tell you how to use the System Product interpreter and the
REXX language:

• System Product Interpreter User's Guide is a step-by-step, tutorial-like, guide to
using the System Product interpreter. It is intended for new users. There is
also an introductory chapter in the VM /SP eMS Primer about the System
Product interpreter.

• System Product Interpreter Reference is'a complete compilation of reference
information for using the System Product interpreter. It is intended for all
users.

As a CMS user, you should become familiar with the System Product interpreter
and use it often to tailor CMS cOIDllljlnds to your own needs, as well as to create
your own commands.

Complete detail& about using the System Product interpreter can be found in the
books listed above.

The 'EXEC 2 processor handles EXEC 2 programs. These EXEC 2 programs and
processing are similar to CMS EXEC programs and processing.

EXEC 2 differs from CMS EXEC in the following ways:

• There is no 8-byte token restriction. Statements are composed of "words" of
up to 255 characters each.

• Commands may be issued from EXEC 2 either to CMS or to specified
"subcommand" environments, for example the System Product editor.

• EXEC 2 has extended string manipulation functions.

• EXEC 2 has arithmetic functions for multiplication and division.

• EXEC 2 has extended,debugging facilitjes.

• EXEC 2 supports user defined functions and subroutines.

• EXEC 2 allows CMS user programs to manipulate EXEC 2 variables.

In addition, the EXEC 2 interpreter is used by the System Product editor for
XEDIT macro processing support.

Re!atiomhip of EXEC 2 and EXEC

EXEC 2 does not support all language keywords and syntax of the CMS EXEC
processor. EXEC 2 coexists. with the CMS EXEC processor program.

Invoking EXEC 2

Attributes of EXEC 2 Files

The CMS EXEC Processor

EXEC programs written for the CMS EXEC processor will continue to execute
correctly with no user modifications. To run CMS EXEC programs as EXEC 2
programs, you must convert the EXEC programs to EXEC 2 programs. See the
publication VM / SP EXEC 2 Reference for information on the EXEC 2 language.

You may not use CMS EXEC language statements in an EXEC to be interpreted
by the EXEC 2 processor, nor EXEC 2 language statements in an EXEC to be
interpreted by the CMS EXEC processor. However, you may call an EXEC 2
procedure from a CMS EXEC procedure, and vice versa. To allow greater user
flexibility with EXEC 2 and the System Product interpreter, automatic cleanup of
an active OS or VSAM environment is not invoked at command completion as it is
in the CMS EXEC processor. It is your responsibility to ensure that OS reset
and/ or VSAM cleanup functions are invoked when needed. VSAM cleanup can be
invoked explicitly by issuing 'DMSVSR' as a command. The CMS EXEC
processor invokes both VSAM and as cleanup after the execution of any CMS
command. Consequently, any CMS EXEC invoked resets both the OS and VSAM
environments if it contains a CMS command that is executed.

EXEC 2 programs may reside in EXEC files (with a filetype of EXEC), and can
be invoked by the EXEC 2 interpreter. The EXEC 2 interpreter is invoked in the
same way the CMS EXEC interpreter is invoked.

For both CMS EXEC and EXEC 2 files with a filetype of EXEC, CMS examines
the first statement of the EXEC file to determine which EXEC processor must
handle it. If the first statement of the EXEC is &TRACE, CMS calls the EXEC 2
processor to handle it. If the first statement is not &TRACE or /* a comment * /,
CMS calls the EXEC processor to handle it.

Note: The &TRACE statement does not have to be the first statement in a file if
the file does not have a filetype of EXEC (if the EXEC is invoked by an SVC
202).

EXEC 2 files can have any filename that is valid for a CMS filename. EXEC 2
files have the filetype EXEC for files that are invoked from the CMS environment,
and the filetype XEDIT for files used as System Product editor macros.

EXEC 2 files can be either 'F' or 'V' format. The maximum line length for lines
read from the console is 130; for lines read from the stack it is 255.

For complete information about EXEC 2, see the publication VM / SP EXEC 2
Reference.

A CMS EXEC procedure is a CMS file that contains executable statements. The
statements may be CMS or CP commands or EXEC control statements. The
execution can be conditionally controlled with additional EXEC statements, or it
may contain no EXEC statements at all. In its simplest form, an EXEC file may
contain only one record, have no variables, and expect no arguments to be passed
to it. In its most complex form, it can contain thousands of records and may
resemble a program written in a high-level programming language.

Chapter 14. Introduction to the EXEC Processors 14-3

14-4 VM/SP eMS User's Guide

Two CMS commands create EXEC files. One is LISTFILE, which can be invoked
with the EXEC option; it creates a file named CMS EXEC. The uses of CMS
EXEC files are discussed. in Appendix B, "The CMS EXEC Processor"under the
heading "CMS EXECs and How To Use Them." The CMS/DOS command,
LISTIO, creates an EXEC file named $LISTIO EXEC, which creates records for
each of the system and programmer logical unit assignments. The LISTIO
command and the $LISTIO EXEC ate described in Chapter 10, "Developing VSE
Programs Under CMS."

More information on the CMS EXEC facility is found in Appendix B, "The CMS
EXEC Processor."

I Chapter 15. Creating System Product Interpreter EXECs

Creating a System Produ(:t Interpreter EXEC

I Invoking Your EXEC Files

A System Product interpreter file, like a CMS EXEC or EXEC 2 file, has a filetype
of EXEC. To determine which EXEC interpreter will be invoked by an EXEC
file, look at the first line in the file.

First line
/* a comment * /
&TRACE
Anything else.

Intepreter
System Product interpreter
EXEC 2 Processor
CMS EXEC Facility

You can create EXEC files with the CMS editors, by punching cards, or by using
CMS commands or programs. When you create a file (filetype of EXEC) using
xEDIT, records are, by default, variable-length with a logical record length (Ireel)
of 130 characters and case is upper. The CMS EXEC facility can process
variable-length files of up to 130 characters. EXEC 2 can process variable-length
filfs of up to 255 characters. The System Product interpreter processes files of any
logical record length (Ireel). For example, to create an EXEC file, enter:

xedit new exec

If you have a fixed-length file that you want to convert to a variable-length file,
then you can edit the EXEC file and issue the XEDIT subcommand:

recfm v

Or, you can use the COPYFILE command:

copyfile new exec a (recfm v

Whenever possible, you should use variable-length EXEC files.

If you use XEDIT to create a CMS EXEC or an EXEC 2 EXEC, you cannot enter
the EXEC statements in mixed case. Use the XEDIT subcommand:

set case uppercase

EXEC procedures are invoked when you enter the filename of the EXEC file. You
can precede the filename on the command line with the CMS command, EXEC.
For example:

exec test

where TEST is the filename of the EXEC file. For example, an EXEC named
THANKYOU would be executed when you entered either:

exec thankyou
-- or -

thank you

Chapter 15. Creating System Product Interpreter EXECs 15-1

15-2 VM/SP eMS User's Guide

You must precede the EXEC filename with the EXEC command when:

You invoke an EXEC from eMS EXECs and EXEC 2 EXECs.

• You invoke an EXEC from REXX with "address command." (The default is
"address CMS," which means EXEC need not be specified.)

• You invoke an EXEC from a program.

• You call a System Product interpreter EXEC recursively.

• You have the implied EXEC (IMPEX) function set OFF for your virtual
machine.

The implied EXEC (IMPEX) function is controlled by the SET command. It
allows you to treat EXEC files as commands so that you only must enter the
filename of the EXEC program. The default setting for IMPEX is ON; you almost
never need to change it. To find out what the IMPEX setting is, enter:

q impex

If the response is:

IMPEX = OFF

this means that the EXEC command must precede the EXEC filename to invoke
an EXEC procedure. To set IMPEX to ON, so that you only need to enter the
EXEC filename, enter:

set impex on

An EXEC procedure having a synonym defined for it can be invoked by its
synonym if the implied EXEC (IMPEX) function is on. You may use the synonym
for an EXEC program within a System Product interpreter program.

One EXEC file that you never have to specifically invoke is a PROFILE EXEC. It
automatically executes after you IPL CMS, when your A-disk is accessed.
PROFILE EXECs are discussed in Chapter 16, "Creating a PROFILE EXEC."

Sample System Product Interpreter EXECs

Here are two sample System Product interpreter EXECs to give you some flavor of
the language.

The first sample is an EXEC to copy a file from any disk to the user's A-disk.
Note that the EXEC uses the required first comment statement as a description of
its function.

/* This exec copies a file from any disk to the user's A-disk */
arg fn ft fm
if fn = '?' then signal tell
if arg() > 3 I arg() < 2
then do

Parse source . . me .
say 'Invalid command for 'me' exec.'
exit
end

if fm "then fm = '*'
copyfile fn ft fm '= = a'
exit rc
tell:
parse source . . me .
say 'This exec,' me', copies the given file to'
say 'the A-disk and passes back the return'
say 'code from copyfile'.
exit 100

Chapter 15. Creating System Product Interpreter EXECs 15-3

15-4 VM/SP eMS User's Guide

The second sample sends the file that you specify to the userid that you specify.
Note that in System Product interpreter EXECs that you do not need to preface a
CP command with CPo

/* This exec sends a specific file to a specific user */
parse source . . me .
n =arg()
if n = 0

then
do

say 'Command is:' me 'user fn ft <fm> ,
exit 100

end
if n<3 I n>4

then
do

say 'Invalid' me 'message'
exit 101

end
arg user fn ft fm
spool punch to user class a
if rc...,= 0

then
do

say user 'is not a valid userid'
exit 102

end
if fm = " then fm 'A'
punch fn ft fm
retsave = rc
spool punch to '*' class a
if retsave ...,= 0

then
do

say 'Error' retsave 'from punch (while in' me')'
exit 103

end
msg user 'I have punched you my file' fn ft fm
exit

Complete details about the System Product interpreter can be found in the System
Product Interpreter User's Guide and in the System Product Interpreter Reference.

I Chapter 16. Creating a PROFILE EXEC

/* sample profile */
access 497 b
set rdymsg smsg
set blip '*'
synonym mysyn

A PROFILE EXEC is different from other EXECs. It has the special filename
PROFILE and it is executed automatically whenever you issue "IPL CMS" (or if
you have automatic IPL). Your PROFILE EXEC contains the CP and CMS
commands that you issue at the start of every terminal session. You can write your
PROFILE EXEC for any of the EXEC interpreters. It usually contains commands
that:

• access disks.
• describe your terminal and printer.
• set up your PF keys.
• describe macro and text libraries that you commonly use.
• set your screen colors (color terminals only).
• invoke your synonym table.

A PROFILE EXEC written with System Product interpreter statements might look
like this:

/* ACCESS B DISK

global maclib osmacro privrnac
global txtlib privlib

/* SHORT FORM OF READY MSG
/* SET BLIP CHARACTER ~O *
/* INVOKE MY SYNONYM TABLE
/* MACRO LIBRARIES
/* TEXT LIBRARIES

*/
*/
*/
*/
*/
*/
*/
*/
*/

set PF1 immed rdrlist
set PF11 immed file list
set PF12 retrieve

/* PF1 KEY RDRLIST
/* PF11 KEY FILELIST
/* PF12 RETRIEVE FUNCTION

Do not use the CP DEFINE STORAGE command in your PROFILE EXEC. It
resets your virtual machine and you would have to IPL CMS again.

You can enter "profile" at any time to execute your PROFILE EXEC. If you
make changes to your PROFILE EXEC during your terminal session, the changes
will not be in effect until you execute your profile again.

Should you want to suppress the execution of your PROFILE EXEC, the first
command you enter after you issue the IPL command is the CMS ACCESS
command with the NOPROF option specified. For example, if you enter:

ipl cms

The system response may be:

VM/SP Release 3 03/2/83 10:22:33

To suppres~ the execution of your PROFILE EXEC, you enter:

6acc 191 a (noprof

When the system responds with:

R;

Chapter 16. Creating a PROFILE EXEC 16-1

16-2 VM/SP eMS User's Guide

you have IPL'ed CMS and accessed your A-disk without invoking your PROFILE
EXEC.

You can find more information about the CMS ACCESS command in the VM/SP
CMS Command and Macro Reference.

Chapter 17. Exchanging Data Between Programs through the Stack

Reading from the Console Stack

When you are in the CMS environment executing programs or CMS commands,
you can stack commands, either by entering multiple command lines separated by
the logical line end symbol, as follows:

print myfile listing#cp query printer

or by signaling an attention interruption and entering a command line, as follows:

Enter:
print myfile listing
Press the PA1 KEY
Enter:
cp query printer

In both of the preceding examples, the second command line is saved in the console
stack. Whenever a read occurs in your virtual machine, CMS reads lines from the
console stack, if there are any lines in it. If there are no lines in the stack, the read
results in a physical read to your terminal (on a typewriter terminal, the keyboard
unlocks).

A virtual machine read occurs whenever a command or subcommand finishes
execution, or when an EXEC or a program issues a read request. Many CMS
commands also issue read requests, for example, SORT and COPYFILE. If you
want to exe~ute one of these commands in an EXEC, you may want to stack, in
the console 'stack, the response to the read request so that when it is issued it is
immediately satisfied. For example:

PUSH "42-121 1 "
COPYFILE &NAME LISTING A '=' ASSEMBLE '= ('SPECS

When the C'OPYFILE command is issued with the SPECS option, a prompting
message for a specification list is issued, followed by a read request. In this EXEC,
the request is satisfied with the line stacked with the PUSH instruction. If the
response were not stacked, you would have to enter the appropriate information
from the terminal during the execution of the EXEC that contained this
COPYFILE command line.

In addition to stacking predefined responses to commands and programs, you can
use the console stack to stack CMS commands and XEDIT subcommands, as well
as data lines to be read within the EXEC.

The number of lines that you can place in the console stack at anyone time varies
according to the amount of storage available in your virtual machine for stacking.
You may want to stack one or two lines at a time, or you may wish to stack many
lines. There are several features available in the System Product interpreter that
can help you manipulate the stack.

Exchanging Data Between Programs through the Stack

The Console Stack is composed of the terminal input buffer and the program stack.
Lines typed at the terminal (maximum length of 130 characters per line) are placed

Chapter 17. Exchanging Data Between Programs through the Stack 17-1

17-2 VM/SP eMS User's Guide

in the terminal input buffer. Lines transmitted by programs through the CMS
ATTN function are placed in the program stack (maximum length of 255
characters per line).

When the WAITRD function is called (as a result of a RDTERM macro call, for
example), it will look in the most recently created buffer of the program stack (see
BUFFER #2 in Figure 17-1). As each buffer is exhausted, RDTERM will look to
the next buffer in the program stack (BUFFER #1). If the program stack is empty,
WAITRD will then look in the terminal input buffer for an input line. If the
terminal input buffer is also empty, then a "console read I/O" will be issued to
acquire data from the terminal.

RDTERM
ATTN ATTN MACRO
FIFO LIFO

I I

L ~ BUFFER #2

BUFFER #1

BUFFER #0

PROGRAM STACK

~l I I I I
TERMINAL INPUT BUFFER

Fagure 17-1. The Console Stack

However, when a program issues a RDTERM TYPE = DIRECT, a VM READ is
presented at your terminal. The program stack and terminal input buffer are
bypassed and unchanged. When the response is entered, the first "logical line" is
read and transferred to buffer. If multiple "logical lines" are entered, the
remaining lines are added to the terminal input buffer in a FIFO manner.

Previously stacked lines read from the program stack will not have changed since
the time they were stored by ATTN (unless uppercase translation has been
requested). Before lines are extracted from the terminal input buffer, they are
scanned by CP (when typed) for characters defined by the CP TERMINAL
command (or for their default values). WAITRD will then scan them for X'15'
(logical end of line character), X'OO' (physical end of line character), and for any
other character defined through a CMS 'SET INPUT' command.

The MAKEBUF, DROPBUF, SENTRIES, and DESBUF CMS commands allow
you to create buffers in the program stack, eliminate some or all of the program
stack buffers, determine the number of lines in the program stack, and empty both
the program stack and the terminal input buffer. These commands may also be

called from a terminal (as CMS commands), from EXEC files, or from assembler
language programs. A complete description of these commands can be found in
the publication VM/SP CMS Command and Macro Reference.

Note: Lines read from the terminal or stacked in the terminal input buffer
can be restacked in the program stack, using the ATTN function, and
executed at a later time. The line length specified in the parameter list for
the ATTN function should be the same length as the line that was
previously read from the terminal or the terminal input buffer. A line
stacked again by ATTN, using a line length greater than the line length read
from the terminal or the console input buffer, may result in an error when
execution of the stacked line is attempted.

Chapter 17. Exchanging Data Between Programs through the Stack 17·3

17 -4 VM/SP eMS User's Guide

I Chapter 18. Commands Used with System Product Interpreter EXECs

The following CMS commands are used along with a System Product interpreter
EXECs. Command formats, description~ and usage notes for these commands are
found in the VM / SP CMS Command and Macro Reference.

EXECIO

EXECOS

Manages movement of lines between virtual devices and the
program stack. Also causes execution of CP commands and
recovers resulting output.

Resets the as and VSAM environments under CMS without
returning to the interactive environment.

GLOBAL V Sets, maintains, and retrieves a collection of named variables.

IDENTIFY Displays or stacks userid, nodeid, rscsid, date, time, time
zone, and day of the week.

IMMCMD Establishes or cancels Immediate commands from an EXEC.

LISTFILE Lists information about CMS disk files.

NAMEFIND Displays/stacks information from a NAMES file (default
'userid NAMES').

QUERY Requests information about a CMS virtual machine.

RDR Generates a return code and either displays or stacks a
message that identifies the characteristics of the next file in
your virtual reader.

SET EXECTRAC Sets tracing ON or OFF for your System Product interpreter
or EXEC 2 EXEC.

XEDIT Invokes the System Product editor to create or modify a disk
file.

The following Immediate commands can be used along with System Product
interpreter EXECs.

HI halt interpretation

TS trace start

TE trace end

Chapter 18. Commands Used with System Product Interpreter EXECs 18-1

I Using EXECIO

RDPRIND EXEC

The following examples show you how you may use some of the CMS commands
with your· System Product interpreter EXECs.

The EXECIO command manages movement of lines between virtual devices and
the program stack. It also causes execution of CP commands and recovers
resulting outpu~.

This example "is not iatended to teach you all you need to know to write System
Product interpreter programs. If you are not already familiar with the System
Product interpreter, see the VM!SP System Product Interpreter User's Guide.

The example illustrates how you might use EXECIO commands in a System
Product interpreter program to read a CMS file from the program stack, then print
that· file, 60 lines per page, with the output indented 15 spaces.

This is n,ot the only, nor necessarily the best, way to accomplish the results.
However, itdoes show some uses of the EXECIO command within a System
Product interpreter program. The statement numbers in the left margin are to
reference explanations below, and are not a part of the program.

Because the program reads, prints, and indents, let's name it RDPRIND EXEC
(the filetype must be EXEC).

1. /* This program reads, prints, and indents */
2. trace n
3. desbufO
4. execio 1 print' (ICC 1 string
5. arg filename filetype filemode .
6. do until execiorc ,=0
7. execio 100 disk filename filetype filemode
8. execiorc=rc
9. do I=1 to queued()
10. parse pull line
11. execio 1 print' ('string' 'line
12. if I//60=0
13. then execio 1 print' ('cc 1 string
14. end
15. end
16. close prt name filename filetype filemode
17. exit

Tl\e following explains the meaning of each statement in the RDPRIND program:

18-2 VM/SP eMS User's Guide

1. The first statement in a System Product interpreter program must always be a
comment (/* comment * I). Note how we use the comment to tell what the
program does.

2. Trace all host conunands which return a negative return code.

3. This is a CMS command to clear the program stack (drop all buffers).

4. This is a CMS command to write a line to the printer (space to top of new
page).

5. Read in the passed parameters, assigning values to filename, filetype, and
filemode. The "." is a placeholder, used here to ignore any passed data after
the third parameter.

6. Starts a DO loop. This statement says that the instructions following the DO,
up to the END statement which is paired with DO (line 15), should be
repeated until the return code from EXECIO (saved in EXECIORC) is not O.

7. This is a CMS command to read 100 lines from the file called "filename
filetype filemode." Those values are set by the ARG command in line 5.

8. The return code from the previous host command (in this case from EXECIO
on line 7) is saved in the special variable named RC. This statement saves the
return code in a variable called EXECIORC so it can be checked later.

9. Another DO loop starts here, similar to the one started in line 6. In this loop,
the set of instructions between the DO and its END (on line 14) will be
repeated while I is incremented from 1 until it is equal to the number of lines in
the program stack. The System Product interpreter built-in function
QUEUEDO returns the number of lines in the program stack.

10. This statement reads a line of data from the stack and assigns the variable
LINE to the data read.

11. This is a CMS command to write a line to the printer. The blanks will be
preserved and the value of LINE (what was read from the stack on line 10)
will be placed on the end of the command before it is passed to CMS.

12. This is a conditional check. It asks if the remainder of I divided by 60 is equal
to O. This will be true when 1=60, 120, etc.

13. If the previous condition checked (in line 12) is true, then this line is executed.
If it's executed, it spaces the printer to the top of a new page (the same
command was used in line 4).

14. This END ends the DO loop started in line 9.

15. This END ends the DO loop started in line 6.

16. This is a CP command to close the printer and name the file. Its filename,
filetype, and filemode will be set based on the values set in line 5.

17. This statement ends normal processing.

Now, to cause the EXEC to read and print a CMS disk file named TESTFILE
DATA A, issue:

RDPRIND TESTFILE DATA A

TESTFILE, DATA, and A are substituted into the program for filename, filetype,
and filemode respectively.

Chapter 18. Commands Used with System Product Interpreter EXECs 18·3

I Using EXECOS

The EXECOS command resets the OS and VSAM environments under CMS
without returning to the interactive environment. If you request a reset of the OS
or VSAM environment, after the execution of a CMS EXEC, the EXECOS
command should precede the CMS EXEC command. For example:

/* example of using EXECOS within an EXEC */
execos exec vmfasm dmsseb <;imssp
exit

Using GLOBALV

/* first exec */

second .
globalv get rumors

.
exit

Using IDENTIFY

The GLOBAL V command sets, maintains, and retrieves a collection of named
variables. You can pass these global variables between EXECs.

For example, we have two EXEC files named FIRST EXEC and SECOND EXEC,
where the FIRST EXEC calls the SECOND EXEC. The variables are established
as global variables in the SECOND EXEC by the statement "globalv put rumors."
The statement "globalv get rumors" in the FIRST EXEC assigns the global
variables to the FIRST EXEC.

/* second exec */

globalv put rumors /* assign variables */

exit

You can use the information returned by the IDENTIFY command within your
EXEC.

For example:

/* example of using identify within your exec */

, identify (lifo' /* get some useful informa·tion * /
pull userid at locmode via rscsid .

.
exit

18-4 VM/SP eMS User's Guide' .

I Using IMMCMD

The IMMCMD command establishes or cancels Immediate commands from an
EXEC.

For the following example we will assume that you have an EXEC that performs a
repetitive process. Each time this EXEC is processed, one record is logged to disk.
Suppose you wanted to suppress logging of the disk records without terminating the
EXEC. Since HX terminates the EXEC, you would not want to use it. Using Pull
is not a good alternative since you want to decide at what point to terminate disk
logging. You can create your own Immediate command to stop disk logging using
the CMS IMMCMD command within your EXEC. For example:

/* Sample EXEC using the CMS IMMCMD command */
/* Set up stoplog Immediate command */
IMMCMD SET STOPLOG
/* Set default logging */
arg log .
if log=" then log='YES'
if log,='YES' & log,='NO' then do

say 'Invalid parameter :' log
exit 24
end

do forever
/* Check for STOPLOG */
IMMCMD STATUS STOPLOG
if rc,=O then log='NO'
/* Perform process ... */

if log='YES' then EXECIO 1 DISKW LOG FILE A

end
/* Clear STOPLOG Immediate command */
IMMCMD CLEAR STOPLOG
exit

Using LISTFILE

I
The LISTFILE command lists information about your CMS disk files. You can use

, this information within your EXEC.

/* Example using LISTFILE to find fileid of the first file */
/* that matches a given filename. */

address command 'MAKEBUF'
address command 'LISTFILE' filename '* * (FIFO'
if rc,=O then filetype='EXEC'
else pull filename filetype filemode .
address command 'DROPBUF'

Using NAMEFIND

The NAMEFIND command displays/stacks information from a NAMES file
(default 'userid NAMES'). Following is an example of how you can use the CMS
NAMEFIND command in an EXEC.

Chapter 18. Commands Used with System Product Interpreter EXECs 18-5

/* Program to retrieve phone numbers * /
arg nick. . ..
'NAMEFIND :NICK' nick ':PHONE :NAME (LIFO'
if rc...,=O then do

say 'Sorry, no phone listing for' nick
exit
end

parse pull name
parse pull phone .
if intercom=" then do

say 'Sorry, no phone listing for' name
exit
end

say name"'s phone number is" phone'.'
exit

Using QUERY and RDR

The following example illustrates one way that you can use the information
returned from the QUERY and RDR commands in an EXEC.

/* Sample exec to show QUERY and RDR command uses

/* This section uses the CMS QUERY command to stack information on
the contents of the users "A" disk. Then, it reads in
the information (throwing away the header line stacked by

*/

the QUERY command) and prints out a formatted message. Unused
variables set by the PULL command can be displayed if you desire */

query disk a '(' lifo
pull label cuu m stat cyl type,

blksize' files used I_I percent,
left total .

pull .
used = strip(used,l)

/* get disk information */
/* read from the stack, */
/* separate into all */
/* variables */
/* read header line */
/* strip leading blanks */

say 'The "A" disk is' percent'% full
'available) ,

('used' used blocks out of' total,

/* This section invokes the CMS RDR command which sets a
return code depending on the status of the reader and also on
the type of file in the reader, should one exist. The System
Product interpreter sets the variable RC to this returned
value. Next, depending on the returned value, this exec
selectively executes one of several commands. */

rdr '(' notype /* get info on rdr file */
/* RC set to return code from RDR command */

select
when rc=O then say 'Reader is empty'
when rc=22 then disk load
when rc=13 then say 'Reader.is not ready'
otherwise

say 'Return code other than expected'
end

18-6 VM/SP eMS User's Guide

I Using SET EXECTRAC

I Using XEDIT

I Writing XEDIT macros

You can trace your System Product interpreter or EXEC 2 EXEC by specifying
SET EXECTRAC ON prior to EXEC invocation. To tum tracing off, specify SET
EXECTRAC OFF.

You can use the XEDIT command within an EXEC and stack XEDIT
subcommands to manipulate a file.

Writing an XED IT macro is like creating a new XEDIT subcommand. An XEDIT
macro is a System Product interpreter or EXEC 2 file invoked from the XEDIT
environment.

Refer to the VM / SP System Product Editor User's Guide for information on writing
XEDIT macros using the System Product interpreter. For information about
XEDIT macros written in EXEC 2 language, refer to the VM / SP EXEC 2
Reference.

Information about writing CMS EDIT macros using the CMS EXEC facility is
found in Appendix B, "The CMS EXEC Processor."

Chapter 18. Commands Used with System Product Interpreter EXECs 18-7

18-8 VM/SP eMS User's Guide

Part 4: The HELP Facility

The CMS HELP facility provides an online display of documentation for CP and
CMS messages and commands, System Product int~rpreter, EXEC 2, and EXEC
statements, and XEDIT, EDIT, and DEBUG subcommands. (The System Product
editor is invoked by the CMS XEDIT command.)

Chapter 19, "Using the HELP Facility" on page 19-1 describes the HELP Facility,
naming conventions for HELP Facility files, and the workings of the HELP
Facility.

Chapter 20, "Tailoring the HELP Facility" on page 20-1 describes ways in which
you can tailor the HELP Facility to your needs and describes techniques provided
by the HELP Facility for creating user HELP description files.

Part 4: The HELP Facility P4-1

P4-2 VM/SP eMS User's Ouide

Chapter 19. Using the HELP Facility

The HELP facility uses the System Product editor to display HELP files. The
HELP facility is designed for use by 3270-type video terminals in full-screen mode.
It can also be used by line-mode terminals.

Note: In some installations, lowercase characters are reserved for display
of special alphabets. In such installations, HELP files should be displayed
in uppercase representation only. For details, see the VM/SP Installation
Guide.

The documentation presented by the HELP facility is the same as given in the
VM/SP publications. HELP displays the message text, explanation, system action
and user action for messages. For commands, HELP will display the description,
format, and parameters, or optionally any of these. HELP displays the formats and
descriptions for EXEC, EXEC 2 and REXX language statements.

HELP allows you to issue a CP or CMS command directly from the displayed
HELP file. Thus, you may issue a command on the command line while viewing
the HELP file for that command. The specified command will remain in the
command line until you press ENTER, even if you scroll the screen. This feature
assists you in remembering what you must specify and how you must specify it.

The HELP facility uses format words similar to those used by the IBM text
processor SCRIPT /VS, to build and display files and menus. You must use these
format words if you build or alter HELP files. The HELP format words are
described in "HELP File Creation" which follows:

If you want to print formatted copies of the HELP files and menus, you need
SCRIPT /VS. Refer to "Printing HELP Files" for information on printing
methods.

The HELP Facility consists of the following components:

1. CP Commands
2. CMS Commands
3. CP and CMS Messages
4. EDIT Subcommands
5. XEDIT Subcommands
6. DEBUG Subcommands
7. EXEC Statements
8. EXEC 2 Statements
9. Restructured Extended Executor (REXX) language component
10. SQL/Data System Program Product (5748-XXJ) (only if you have this

installed on your system.)

Each of these components (except CP and CMS messages) has a menu that lists all
the HELP files available for that component. You may call a HELP file directly or
you may call a menu and then select the HELP file from the menu.

If you wish to take advantage of the flexibility of the HELP Facility to tailor the
HELP files to fit your own needs, you should also read Chapter 20, "Tailoring the
HELP Facility"

Chapter 19. Using the HELP Facility 19-1

Issuing the Help Command

Help

To use the HELP facility, issue the CMS HELP command. The HELP facility
allows you to display a menu of the components for which HELP files are
available, a menu of the HELP files available for a particular component, and the
actual HELP files.

The format of the HELP command is:

- -t~j}(>

Wp
i~ j)GV\~ t~ j)(5

rcomponen£l {name [(option [)]] }
~CMS J f'V'LAV\.V'\ ~~. ~.",,,,

....- -
~1 ~(\">aNl C~-t\ ~/L(

options:

ALL
FORM
EARM

/6ESC

where:

HELP
displays information on how to use the CMS HELP facility. HELP HELP
displays a description of the function of the HELP command, its syntax,
keywords, operands, and options.

message

MENU

is the 7 -character message id you specify to display the HELP file for a
message. Specify the message id in the form xxxnnnt, where:
xxx

nnn

t

indicates the component (for example, DMS for CMS messages, DMK
for CP messages)

is the message number

is the message type
Note that you must specify the 7-character message id, not the IO-character
id that also identifies the issuing module. For example, specify DMS250S
rather than DMSHLP250S for information on that message.

displays a list of component menus available. The component menus list the
commands, sub commands or EXEC control statements for which HELP files
are available. MENU is the default if no parameters are specified.

component
is the name of the component you want information about. The HELP
facility has the following components:

19-2 VM/SP eMS User's Guide

Component
CMS
CP
DEBUG
EDIT
EXEC
EXEC2
XEDIT
REXX
SQLDS

component MENU

Description
Conversational Monitor System commands
Control Program commands
CMS DEBUG sub commands
CMS EDIT subcommands
CMS EXEC statements
EXEC 2 statements
XEDIT subcommands
System Product interpreter Statements
SQL/Data System Program Product (5748-XXJ) (only if you
have this installed on your system.)

displays the menu of HELP files available for the specified component.
There is no default component when you specify component MENU. (For
example, if you want to display the menu of CMS commands, you must issue
HELP CMS MENU.)

component name
displays the HELP file for the specified command, subcommand, or
statement. CMS command abbreviations are the only abbreviations allowed
when using HELP. If a component is not specified, eMS is assumed. Thus,
if you want to display the HELP file for a eMS command, you need only
specify:

HELP name

option
allows you to specify DESC, FORM, P ARM, or ALL. ALL is the default.
The HELP command options are:

ALL

DESC

FORM

PARM

display the specified HELP file starting at the beginning.

display the specified HELP file starting with the description.

display the specified HELP file starting with the format specification.

display the specified HELP file starting with the parameter
descriptions.

When a HELP command option is specified, the entire HELP file is made
available to the user. The options effect only the initial position of the
HELP file display.

Examples:

These are examples of HELP requests issued as CMS commands. Remember that
you may also request HELP files directly from menus or from the XEDIT
environment.

To request a HELP file for CP message DMK003E, issue:

HELP DMK003E

Chapter 19. Using the HELP Facility 19-3

19-4 VM/SP eMS User's Guide

To request a menu of CP commands, issue:

HELP CP MENU

To request a HELP file for the XEDIT LOCATE subcommand, issue:

HELP XEDIT LOCATE

To request display of the HELP file for the CMS TAPE command beginning with
the description, issue:

HELP CMS TAPE (DESC or HELP TAPE (DESC

Usage Notes

1. If you specify more than one option, only the first is checked for validity.

2. HELP accesses the disk containing the system HELP files, if not already
accessed (This disk is specified at system generation time by the system
support personnel). The HELP disk is accessed using the first available
filemode and remains accessed after HELP has completed processing.

3. For commands or statement names containing one of the following special
characters, (for example, EXEC statements &STACK and &END), HELP
creates the filename by translating the special character as follows:

? is translated to QUESMARK
= is translated to EQUAL
/ is translated to SLASH
" is translated to DBLQUOTE
& is translated to AMPRSAND
* is translated to ASTERISK

is translated to PERIOD

The first character of the name of the special character replaces the special
character in the filename.

Thus, the statements &STACK and &END would have the filenames ASTACK
and AEND. Remember that these changes only apply to the filenames of the
statements; they do not affect the way you call for a HELP file display. To
display the HELP files for &STACK and &END, you would issue HELP
EXEC &ST ACK and HELP EXEC &END.

If the name is a single special character, then the filename will be the name of
the special character. For example, & and? have the filenames of
AMPRSAND and QUESMARK respectively.

The following table illustrates these naming conventions.

NAME FILENAME CALLED AS

& AMPRSAND &

? QUESMARK ?

Menus

NAME FILENAME CALLED AS

&STACK ASTACK &STACK

&DISK? ADISKQ &DISK?

&* AA &*

&$ A$ &$

4. Since HELP is a CMS command and uses the CMS ABBREV routine and
command tables, abbreviations can only be specified for CMS commands.
Abbreviations of commands and subcommands for any "component" other
than "CMS" (for example, CP or XEDIT) cannot be resolved.

5. On typewriter terminals, only 12 lines will be displayed and then the user is
asked:

DO YOU WISH TO CONTINUE? HIT' 'ENTER" (YES) ELSE TYPE "QUIT"

Any entry other than "QUIT" prints 12 more lines unless the end of the file is
reached first.

Menus are alphabetical lists of all HELP files for a component. On terminals
having both upper and lower case capability, menus show the minimum
abbreviation of a file name you can issue in upper case characters with the
r,~mainder of the name in lower case characters (for example, ACcess). See
Figure 19-1 on page 19-6 for an example of a displayed menu. You can get a list
of all the menus available to you by issuing:

HELP or HELP MENU

You get a menu by issuing:

HELP component MENU ..

You can request display of a particular HELP file directly from a menu by
positioning the cursor at any part of the name and pressing the PF1 key. After the
HELP file is displayed, you may return to the menu by pressing PF1 again.

To position the cursor at the file name you want, you can do anyone of the
following:

use the key marked ---> I , which functions as a tab key, causing the cursor to
move to the first character of the next filename.

• use another cursor-movement key.

• type the desired filename and press PF5.

When the cursor is positioned at the desired file name, press the ENTER key or the
PF1 key to display the HELP file for that name. The CLOCATE subcommand
cannot be used in the MENU files. To find names on MENU screens, enter the
desired file name and press PF5.

Chapter 19. Using the HELP Facility 19-5

An asterisk (*) preceding a name in a displayed menu file indicates that the named
file itself is a menu file.

====> CMS MENU <========> H E L PIN FOR MAT ION <==========
A file may be selected for viewing by placing the cursor under any character
of the file wanted and pressing the PF 1 or ENTER key. A MENU file is
indicated when a name is preceded by an asterisk (*). If you are using a
terminal that doesn't have a cursor or PF keys then you must type in the
complete HELP command with operands and options. For a description of the
operands and options type HELP HELP.

*DEBUG CP EXECIO HT MOVEfile
*Edit DDR EXECOS HX NAMEFind
*EXec DEBUG EXECUPDT IDentify NAMES
*EXEC2 DEFAULTS FETch IMMCMD NOTE
*REXX DESBUF FILedef INclude NUCEXT
*Xedit DISK FILEList LAbeldef NUCXDROP
ACcess DISKID FINIS LISTDS NUCXLOAD
AMserv DLBL FORMAT Listfile NUCXMAP
Assemble DOSLIB GENDIRT LISTIO OPTION
ASSGN DOSLKED Genmod LKED OSRUN

1= Help 2= Top 3= Quit 4= Return
7= Backward 8= Forward 9= PFKey 10= Backward 1/2

====>

Figure 19-1 (Part 1 of 2). CMS Menu Display

====> CMS
*DEBUG
*Edit
*EXec
*EXEC2
*REXX
*Xedit
ACcess
AMserv
Assemble
ASSGN
ATTN
CATCHECK
CMDCALL
CMSBATCH
COMpare
CONWAIT
COPYfile

MENU <========> H E
CP
DDR
DEBUG
DEFAULTS
DESBUF
DISK
DISKID
DLBL
DOSLIB
DOSLKED
DROPBUF
DSERV
Edit
ERASE
ESERV
EXec

EXECIO HT
EXECOS HX
EXECUPDT IDentify
FETch IMMCMD
FILedef INclude
FILEList LAbeldef
FINIS LISTDS
FORMAT Listfile
GENDIRT LISTIO
Genmod LKED
GLobal LOAD
GLOBALV LOADLIB
HB LOADMod
Help MACLib
HI MAKEBUF
HO MODmap

L PIN F
MOVEfile
NAMEFind
NAMES
NOTE
NUCEXT
NUCXDROP
NUCXLOAD
NUCXMAP
OPTION
OSRUN
PEEK
PRint
PSERV
PUnch
Query
RDR

1= Help 2= Top 3= Quit 4= Return
7= Backward 8= Forward 9= PFKey 10= Backward 1/2

====>

Figure 19-1 (Part 2 of 2). CMS Menu Display

19-6 VM/SP eMS User's Guide

RDRList SSERV
READcard START
RECEIVE STATE
RELease SVCtrace
Rename SYNonym
RESERVE TAPE
RO TAPEMAC
RSERV TAPPDS
RT TE
RUN TELL

5= Clocate 6= ?
11 = Forward 1/2 12= Cursor

MACRO-READ 2 FILES

o R MAT ION <==========
RDRList SSERV
READcard START
RECEIVE STATE
RELease
Rename
RESERVE
RO
RSERV
RT
RUN
SENDFile
SENTRIES
SET
SETPRT
SO
SORT

SVCtrace
SYNonym
TAPE
TAPEMAC
TAPPDS
TE
TELL
TS
TXTlib
Type
Update
WAITRD
Xedit

5= Clocate 6= ?
11= Forward 1/2 12= Cursor

MACRO-READ 2 FILES

The System Product Editor

The System Product editor is a full-screen CMS text editor. The HELP facility
uses this editor to display HELP files. Many of the features of XED IT
subcommand are available for use on the displayed files. Two of the available
features are:

Locate

Scrolling

Locate a specified character string in the file or use PFS to search
the file. PFS positions the cursor under the target string.

Move the display up or down.

See the publication VM / SP System Product Editor Command and Macro Reference
for complete explanations of these features.

Not all features of System Product editor are available for use on the displayed help
files. The excluded features are:

FILE
INPU1'
MACRO

READ
SET
POWERINP

These are excluded to prevent unnecessary copying of HELP files and to avoid any
inadvertent changes to the help files.

While these features will not work on files displayed by the HELP facility, all the
System Product editor features are available if you wish to use the XED IT
subcommand to edit the files (calling file by XEDIT filename filetype, not through
HELP).

When you issue an XEDIT subcommand to reposition the display of the file on the
screen, HELP ensures that a full screen of data is displayed (if there is one). This
is done to eliminate blank, or nearly blank, screens.

Chapter 19. Using the HELP Facility 19-7

Using the PA2 Key and the PF Keys

Key Meaning

PF1 HELP

MENU

PF2 TOP

PF3 II QUIT

PF4 RETURN

PF5 CLOCATE

PF6 ?

PF7 BACKWARD

PF8 FORWARD

PF9 PFKEYS

PF10 BACKWARD
1/2

The PA2 key (or its equivalent) andPF keys have the following meanings when
using the HELP facility:

Usage

is used to access HELP files from a menu after the cursor is positioned
at the desired file name. .

is used to return to a menu from a displayed HELP file.

moves the display to the top (front) of the HELP file.

goes back to the previous file displayed. (See Figure 19-3 on page
19-10)

exits from displayed HELP file. PF4 quits all HELP files currently in
storage. For example, if you call a menu, then called a HELP file from
that menu, PF4 quits both the file and the inenu and returns control to
the originating environment (see Figure 19-3).

is the XEDIT subcommand CLOCATE. On the command line, enter
the string you are looking for. Then press PF5 to tell HELP to locate
the first occurrence of the string, and so on. HELP highlights the line
located. For detailed information about the CLOCATE subcommand,
refer to the VM / SP System Product Editor Command and Macro
Reference

displays the last user command issued from the command line.

moves the display towards the top of the file one screen. If your screen
is 24 lines, then the display is moved up 20 lines.

moves the display towards the bottom of the file one screen. If your
screen is 24 lines, the display is moved down 20 lines.

displays a file containing an explanation of PF key meanings for
displayed files.

moves the display towards the top of the file one-half a screen. If your
screen is 24 lines, the display moves up 10 lines.

Figure 19-2 (Part 1 of 2). Keys in the HELP Facility

19-8 VM/SP eMS User's Guide

Key Meaning Usage

PF11 FORWARD 1/2 moves the display toward the bottom of the file one-half a screen. If
your screen is 24 lines, the display moves down 10 lines.

PF12 CURSOR moves the cursor to the command line or to its previous location.

P A2 PRINT is used with HELP text and menu files. P A2 gives a hardcopy
capability. Pressing PA2 while a HELP screen is displayed causes a
copy of the current screen to be sent to the currently spooled printer.
After quitting HELP, issue CP SP PR T CLOSE to print the file. The
P A2 key is set to the XED IT COPYKEY function (SET P A2
COPYKEY).

Figure 19-2 (Part 2 of 2). Keys in the HELP Facility

Chapter 19. Using the HELP Facility 19-9

YOUR
FILE

XEDIT
Menu

SET
Menu

1st sub
command

2nd sub
command

step 1: XEDIT a file. Then you
want HELP for XEDIT subcommands.

Step 2: Specify HELP XEDIT MENU
to get the XEDIT Menu displayed.

Step 3: Select the *SET file from
the XEDIT menu and the SET Menu is displayed.

Step 4: Select a subcommand file from
the SET Menu and the file is displayed.

Step 5: you specify HELP XEDIT name to
display the file of another subcommand.

Assume you have followed the sequence given above and the
HELP file for the 2nd subcommand is being displayed.
If you to press:

PFl you return to the last Menu file displayed (in this case step 3).

PF3 you return to the previous file displayed (in this case step 4).

PF4 you quit all HELP files called and return to your pre-HELP location
(in this case step 1).

Figure 19-3. Example of Using PF1, PF3, and PF4 in HELP

Printing Help FOes

19-10 VM/SP eMS User's Guide

When displaying HELP files, you can get a printed copy of any screen by pressing
the P A2 key while the screen is displayed. CMS sends a copy of the displayed
screen to the currently spooled printer. This is true for all HELP files.

Remember that all HELP files are CMS files and, as such, can be printed. If you
want to print the files formatted, that is, looking as they do when displayed on your
screen, you need SCRIPT /VS. If you have this product, you can change the
filetype of any file to SCRIPT and then print it like any other SCRIPT file.
Without SCRIPT /VS you can only print the HELP files unformatted.

Note: Some special characters used in the HELP files may vary when printed,
depending upon the printer used, and the.printed output will be continuous with no
page breaks.

Notational Conventions

The HELP file notation used to define the command syntax for VM/SP is:

• The use of the less than «) and greater than (» Txsymbols denote choices, one
of which must be selected. For example:

<A>

indicates that you must specify A.

<A>

<C>

indicates that you must specify eitherTx A, B, or C.

• The use of the following notation (shown in the examples) denotes choices,
one of which may be selected. For example:

(A)

indicates that you may specify A or you may omit the field.

+ +
IAI
IBI
lei
+ +

indicates that you may specify TxA, B, or C, or that you may omit the field.

Naming Conventions for HELP Files

When you extend the HELP text files provided, 'you must use the following naming
conventions for the HELP files:

• The filename for components, commands, subcommands, or EXECs must be
the exact full name of the component, command, subcommand, or EXEC.

• The filename for messages has the form xxxnnnt where:

xxx is the component code prefix (for example, DMS for CMS messages).
See' VM / SP System Messages and Codes for a list of the component code
prefixes.

nnn is the message number.

t is the message type code (for example, E for error messages in CMS).

For example, the filename for the CMS message

NO FILENAME SPECIFIED

would be DMSOOIE.

Chapter 19. Using the HELP Facility 19-11

HELP Facility Filetypes

• The filetype for components, commands,. or EXECs is "HELPxxxx" where
xxxx identifies the system associated with this component, command, or
EXEC. For example, the filetype for a CMS command would be
"HELPCMS. "

• The filetype for subcommands is "HELPxxxx" where xxxx identifies the
command name associated with this subcommand; for example:

HELPDEBU for the DEBUG command.

• The filetype for messages is "HELPMSG."

• The filetype for a list of all supported commands for a given function is
"HELPMENU."

The following illustrates the naming conventions required to interface with the
HELP command:

Filename Filetype Description

ACCESS HELPCMS A CMS command description

EDIT HELPCMS A CMS command description

CHANGE HELPEDIT An EDIT subcommand description

DMS186W HELPMSG A CMS message description

CMS HELPMENU A list of the CMS command and/or EXEC names
supported by the HELP facility

The filetype of the. HELP file is HELPxxxx where xxxx is the name of the
component the file belongs to. If the component name is shorter than 4 characters,
the filetype is shortened (for example, HELPCP is the filetype for CP commands).
If the component name is longer than 4 characters, only the first 4 characters are
used (for example, HELPDEBU is the filetype for DEBUG subcommands).

The only exception to the above rule is for EXEC 2 HELP files. Since EXEC and
EXEC 2 have the same first four characters, CMS examines the fifth character to
determine if the request is for EXEC or EXEC. 2. Similarly, since filetypes are
limited to 8 characters, CMS assigns the filetype HELPEXEC to "EXEC files, and
the filetype HELPEXC2 to EXEC· 2 files.

Filetypes Reserved for HELP

The reserved filetypes for HELP are:

19-12 VM/SP eMS User's Guide

Flletype What it is Reserved for

HELPCP CP commands

HELPCMS CMS commands

HELPDEBU DEBUG subcommands

HELPEDIT EDIT subcommands

HELPEXEC EXEC statements

HELPEXC2 EXEC 2 statements

HELPHELP HELP files for HELP

HELPMENU menus of HELP components

HELPMSG CMS and CP messages

HELPREXX System Product interpreter Statements

HELPXEDI XEDIT subcommands

HELP SET XEDIT SET Subcommands

HELPPREF XEDIT PREFIX sub commands

HELPSQLD SQL/Data System (5748-XXJ) Program Product (only if you
have this installed on your system.)

Chapter 19. Using the HELP Facility 19-13

19-14 VM/SP eMS User's Guide

Chapter 20. Tailoring the HELP Facility

One of the most useful features of the HELP facility is its flexibility. You can take
full advantage of the CMS file system format used in the HELP facility to tailor it
as best suits you.

If you have your own set of HELP files, you can do as you wish with them.
However, if you share a set of HELP files with other system users, you will have to
get authority from the System Administrator to alter the HELP facility.

What you can do To Your HELP Files

Adding HELP Files

Deleting HELP Files

Altering Existing HELP Files

Since all HELP files are CMS files, you can add or delete files or menus, or change
any existing file or menu. There are a few restrictions you must follow when
tailoring HELP files; they are discussed in the following sections.

Note: If you tailor your HELP files, you should retain documentation of
the changes you've made. You can use that documentation to help you
update your files when IBM issues update to the HELP facility files.

One way you could do this would be to use the format control word ".cm"
indicating that what follows is a comment. For example:

.em HELP format work.

HELP will not display any lines in a HELP file that begin with the command
".cm." Thus you could include information about any alterations you have made to
your HELP files in the file itself.

You can either add HELP files to existing components or create a new component
with its own HELP files.

If you add HELP files to an existing component, you should follow the formatting
rules given in Chapter 19, "Using the HELP Facility" for HELP file naming
conventions and in this chapter "Creating HELP Files."

If you update a component you should update its menu also. You do this by calling
the menu file with the System Product editor, or any other editor, and adding the
new names anywhere in the list of names. Remember that the filenames; start in
column 1, are one to a line, and are limited to 8 characters.

You delete HELP files just as you delete any CMS file. Specify ERASE filename
filetype to delete a file. If you delete a file, you should delete the filename from the
menu for that component also.

To alter a HELP file, first call the file with a text processing editor. Then add or
delete as you wish, making sure that you follow the instructions given in "Naming
Conventions for HELP Files" on page 19-11 and in"Creating HELP Files" on
page 20-3.

Chapter 20. Tailoring the HELP Facility 20-1

Creating Menus for HELP Files

Example of Menu Creation

Changing Menus

20-2 VM/SP eMS User's Guide

Menus for the HELP facility have the filetype HELPMENU. The filename is the
component name they serve (for example, EXEC2 HELPMENU is the filename
and filetype for the EXEC 2 menu). Menus contain a list of the HELP files for
that component. There are only a few restrictions you must follow when creating
menu files. You may precede the list of names with any amount of information for
the user. Between this information and the list of names, you must include two
lines with the following HELP format words:

.sp 2

.fo off

Following these commands, you enter the filenames in any order, but they must
begin in column 1 of the file, have 8 or less characters, and be one to a line. This
list of names is sorted in ascending alphabetical order (in columns 1 thru 8) and is
formatted for display on the screen. If there are not two consecutive blank lines
found, then the file is considered pre-formatted and is not sorted or formatted by
HELP. Any two consecutive blank lines indicates the end of th~ user information
section and the beginning of the list of names for the HELP files for that
component. Therefore you are limited to one extra space between items in the user
information area.

Assume you want to add HELP files concerning your internal system procedures to
the HELP facility. Chose the component name of SYS4 (System 4) for these
procedures. Then create the HELP files for these procedures, giving them a
filename and filetype. The filetype should be HELPSYS4. Follow'the rules given
in "Naming Conventions for HELP Files" on page 19-11. Thus the procedures
CLASS8 (a class identifying the type of printing desired) would be a CMS HELP
file named "class8 helpsys4."

The menu file for this component would have the filename SYS4 and the filetype
HELPMENU and would be set up like below. This menu lists HELP files available
for System 4 procedures .

. sp 2

.fo off
CLASS8
CLASS7
CLASSO
CLASSC
MOUNT
DEMOUNT

When you specify "help sys4 menu," the HELP facility will alphabetize and
columnize the filenames and display this file. You may then work with this menu
as you would with any other HELP menu.

If you add, delete or change files, you should change the associated menu. Call the
menu file (filename is component name, filetype is HELPMENU) with a editor and
make the necessary changes. Remember that there is an eight-character limit on

Creating HELP Files

filenames, only one filename goes on a line, and you can insert filenames anywhere
in the list. If you delete a filename, you should delete the line that the filename is
on.

The HELP facility enables the user to:

• Extend the command and message description files IBM provides with
additional description files of the user's choice

• Produce a formatted terminal display by using the HELP format words when
creating the HELP description file.

Creating Additional HELP Files

Users creating additional files for the HELP facility can format their own file or use
the format words the HELP facility supports. These format words do the
following:

• Draw boxes to enclose tables, illustrations or text

• Place comments within a file

• Indicate that certain input lines are to be included in the formatted output only
under certain conditions

• Cause concatenation of input lines and left- and right-justification of output

• Indent only the next input line the specified number of spaces

• Indent a series of input lines the specified number of spaces

• Indent the specified number of spaces all but the first line in a series of input
lines

• Insert blank lines between output lines

• Change the final output representation of any input character

The HELP format words are summarized in Figure 20-1 . Descriptions and
examples of their use follow.

Chapter 20. Tailoring the HELP Facility 20-3

Format Word Operand Format Function Break Default Value

.BX (BOX) V1 V2 ... Draws horizontal and Yes Draws a
Vn OFF vertical lines around horizontal

subsequent output text, in line.
blank columns.

.CM Comments Places comments ina file No
(COMMENT) for future reference.

.CS nON/OFF Allows conditional No
(CONDITIONAL inclusion of input in the
SECTION) formatted output.

.FO ON/OFF Causes concatenation of Yes On
(FORMAT input lines, and left and
-MODE) right justification of

output.

.IL nl+nl-n Indents only the next line Yes 0
(INDENT the specified number of
LINES) spaces.

.IN nl+nl-n Specifies the number of Yes 0
(INDENT) spaces subsequent text is

to be indented.

.OF nl+nl-n Provides a technique for Yes 0
(OFFSET) indenting all but the

first, line of a section.

.SP n Specifies the number of Yes 1
(SPACE) blank lines to be inserted

before the next output
line.

.TR s t Specifies the final No
(TRANSLATE) output representation of

any input character.

Figure 20-1. HELP Format Word Summary

Enclosing Text (.BX Format Word)

20-4 VM/SP eMS User's Guide

The HELP facility can insert vertical and horizontal lines in the formatted output to
enclose text, illustrations, or tables. You use the .BX format word to specify when
you want the horizontal lines to appear and in which columns the vertical lines
should appear.

The .BX format word is used in three steps to completely enclose text:

1. The first time you issue the .BX format word, specify the columns in which you
want the vertical lines to appear. For example:

.bx 1 10 20 30

results in the following output:

+--------1---------1---------+

Note: The first occurrence of the .BX format word causes a horizontal line to
appear between the first and last column you specified.

2. After the first issuance of .BX, begin entering the text that is to be enclosed.
As HELP formats these lines, vertical lines are placed in the columns that you
specified on .BX. However, if a column already has a data character in it, it is
not overlaid with the vertical line.

Note: Whenever you want just a horizontal line to appear (for example, to
separate lines in a table), enter the .BX format work without operands. For
example:

.bx

results in the following output:

1--------1---------1---------1
3. When you have finished entering the text that is to be enclosed, issue:

.bx off

to cause another horizontal line to appear and to prevent any more vertical
lines from appearing. This output is:

+--------1---------1---------+
The following example illustrates this technique of enclosing text .

. fo off

.bx 1 10 50

.in 2

.of 8
Item 1 Put Item1 text here.
The second line can be written here .
. bx
.of 8
Item 2 . Then put Item2 text here .
. bx off

When these input lines are processed, the result is:

+--------1---------------------------------------+
1 Item1 IPut Item1 text here. 1

1 IThe second line can be written here. 1

1--------1---------------------------------------1
1 Item2 IThen put Item2 text here. 1

+--------I------~--------------------------------+

This example shows how you can change the vertical structure several times in
succession. The control words:

.bx 10 20

.sp

.bx 5 25

.sp

.bx 10 20

.sp

.bx 5 25

.sp

.bx 10 20

.sp

.bx off

result in:

Chapter 20. Tailoring the HELP Facility 20-5

+---------+
I I

+-------------------+
I I
+-------------------+

I I
+-------------------+
I I
+-------------------+

I I
+---------+

Placing Comments in HELP Files (. CM Format Word)

In addition to text and format words, HELP files can contain comments.
Comments are useful for:

• Tracking files. You can include comments that give your name, the date and
reason you created a file, and a future date at which the file may be erased.

• Documenting formats. If you use a special format in a HELP file that may be
accessed by other people, you may want to place notes within the file
explaining how to update the file.

• Place-holders. If a file is incomplete, you may want to put comments in the file
where information should be added later.

You can place comments in a HELP file with the .CM format word:

.cm Created 10/06/82

.cm Updated 1/3/83

HELP does not display comments when processing.

Conditional Display of Text (. CS Format Word)

You can indicate to HELP that certain sections of the file are to be displayed first
if the appropriate HELP command options are specified. These options are
PARM, FORM, DESC, and ALL. (See VM/SP CMS Command and Macro
Reference for information on the use of these options.)

In order for HELP command processing to display the appropriate information,
you must use the .CS format word in the following manner:

.cs 1 on
(text for DESC option)
.cs 1 off
.cs 2 on
(text for FORM option)
.cs 2 off
.cs 3 on
(text for PARM option)
.cs 3 off

Use of Format Mode (.FO Format Word)

20-6 VM/SP eMS User's Guide

Format-mode processing means that the HELP facility displays the output lines
without breaks, unless specifically requested, and right-justified. You may not
want this type of formatting in all cases; you may want certain output to appear
exactly as it appears in the HELP file. For this, use the .FO format word to turn
off format-mode processing as follows:

.fo off

When you want to resume format-mode processing, enter:

.fo on

Format-mode processing is the default.

Indenting Text (.IN and .ILfonnat Words)

When you are creating documents, you may want to set off paragraphs or portions
of text by indenting them. This often improves the readability by emphasizing
certain text. You can cause paragraphs to be indented using the .IN format word.
For example, the lines:

This line is not indented .
. in 5
This line is indented.

result in:

This line is not indented.
This line is indented.

The .IN format word causes a break so that text accumulated before the .IN format
word is processed and displayed, then the next text is processed.

The .IN format word effectively sets a new left margin for output text so that when
you want text indented you do not have to enter blanks in front of the input lines
(as you would for normal typing). HELP continues to concatenate and justify
input text lines that begin to column 1, but displays the output indented the number
of spaces you specify.

Here's another example:

These few lines of text
are formatted
with enough words
.in 5
so that you can
see how HELP's formatting
process
.in +3
continues and may
.in -6
even be reversed, by using a
negative value.

These lines result in:

These few lines of
text are formatted
with enough words

so that you can
see how HELP's
formatting
process

continues and
may

even be reversed,
by using a negative
value.

Chapter 20. Tailoring the HELP Facility 20-7

In this example, the first .IN format word shifts output to tlte right five spaces so
that text begins in column 6. The second .IN format word requests that the current
indentation increase by three spaces so the.left margin is now in column 9. When
you supply a negative value with the .IN format word, the margin is shifted to the
left.

To cancel an indentation that is in effect, you can use a negative value, or you can
use the format word:

.in 0

Because 0 is the default value, you need not specify it when you want to restore the
left margin to column 1. You can specify simply:

.in

When you want to indent only a single line of text (that is, the next output line),
use the .IL format word. For example:

This line begins in column 1 .
. in 5
This line begins in column 6,
which is now the left margin .
. il -3
This line is shifted 3 spaces
to the left of the current margin .
. il 3
This line is shifted 3 spaces to
the right of the current margin.

Help processes these lines as follows:

This line begins in column 1.
This line begins in
column 6, which is now
the left margin.

This line is shifted 3
spaces to the left of
the current margin.

This line is shifted
3 spaces to the right
of the current margin.

Because the .IL format word causes a break in text, you may find it useful to
indicate the beginning of a new paragraph. For.example:

.il 3
This line begins a paragraph .
. il 3
This line begins another.

These lines result in:

This line begins
a paragraph.

This line begins
another.

Use of Offsets (. OF Format Word)

20-8 VM/SP eMS User's Guide

In HELP formatting, an offset differs from an indentation in that offsets do not
affect the first line immediately following the format word; the second and

subsequent input lines are indented the specified number of characters. This is
useful, for example, when formatting numbered lists where text is blocked to the
right of the number.

When a .OF format word is processed, the next text line is printed at the current
left margin and subsequent lines (until the next .OF or .IN format word) are offset
the specified number of characters. For example, the lines:

.of 5
-----This line begins
a 5-character offset .
. of 5
-----This is another line offset
5 characters .
. in 5
An indent changes the left
margin and cancels the offset .
. of 3
---This paragraph begins
at the new left margin .
. of 3
---Here's one more line.

result in:

-----This line begins a
5-character offset.

-----This is another line
offset 5 characters.
An indent changes
the left margin and
cancels the offset.
---This paragraph

begins at the new
left margin.

---Here's one more
line.

An offset can be canceled with the format word .

. of 0

This format word causes a break; subsequent text is printed at the current left
margin, that is, whatever the indention is (0, if no .IN format word is in effect).

Any INDENT format word cancels a current offset and resets the left margin. If
you specify a positive or negative increment with the INDENT format word and an
offset is in effect, the offset is canceled and the new left margin is computed from
the current indent value.

The .IL (INDENT-LINE) format word uses the current margin (the indent value
plus the offset value) when computing the margin for the next line.

To achieve a format that has several levels of offsetting, you can combine the .IN
and .OF format words.

When you use blank space following the item indicator (for example, the number in
a numbered list), HELP may add extra blanks when it justifies the line; if so, the
first line may not be aligned with the remainder of the offset item.

Chapter 20. Tailoring the HELP Facility 20-9

Spacing between Lines of Text (.SP Format Word)

20-10 VM/SP eMS User's Guide

If you do not want an input line to be concatenated with the line above it, you must
cause a break. To cause a break in a HELP file, begin a line with one or more
blank characters (by using the space bar on your terminal keyboard). When HELP
reads an input line that begins with a blank character, the formatting process is
interrupted; all of the text that has accumulated for the current line is displayed as
is, even if more words would have fit on the line; the next input line begins a new
output line.

To create paragraphs in text, then, all you have to do is to enter spaces at the
beginning of each line that is to begin a new paragraph. For example, the input
lines:

The quick brown
fox
carne over to greet the lazy poodle.

But the poodle was frightened
and ran away.

is displayed by HELP as:

The quick brown fox
carne over to greet the
lazy poodle.

But the poodle was
frightened and ran
away.

If you want to place blank lines between lines of text, you can press the space bar
at least once on a line that has no other text, then press the Return or Enter key.

Instead of entering a blank line, you can use the .SP format word. Thus the
input lines:

The quick brown fox carne over to
greet the lazy poodle .
. sp
But the poodle was frightened
and ran away.

are formatted as follows by HELP:

The quick brown fox
carne over to greet the
lazy poodle.

But the poodle was
frightened and ran
away.

The .SP format word allows you to enter a numeric parameter indicating how many
spaces you want to leave on the text output. For example:

.sp 5

indicates that you want to leave five lines of space in the text output. You can use
multiple spaces when you want a heading or a title to stand out, for example the
lines:

A Love story
.sp 3
The quick brown fox
was eager
to meet the pretty poodle.

will result in:

A Love story

The quick brown fox
was eager to meet the
pretty poodle.

Translating Output Characters (.TR Format Word)

After HELP has formatted an output line but before it displays that line, HELP
may translate any of the characters in that line to a different character
representation. You use the. TR format word to request that this translation be
done. For example, to request that all blanks (x'40') in the file be displayed as
question marks, enter:

.tr 40 ?

To stop the translation of the question mark as a blank, enter:

.tr ? ?

Note: When the. TR format word is used without operands, the translation of all
characters is stopped.

Chapter 20. Tailoring the HELP Facility 20-11

20-12 VM/SP eMS User's Guide

Appendix A. The eMS Editor

Editing a FOe

The EDIT Command

When you issue the EDIT command, the System Product editor automatically
places you in eMS editor (EDIT) migration mode. In this mode, you can issue
both EDIT and XEDIT subcommands. For complete information on EDIT
migration mode, as well as instructions on how to invoke the eMS editor, see the
VM/SP System Product Editor Command and Macro Reference.

To edit a file means to make changes, additions, or deletions to a eMS file that is
on a disk, and to make these changes interactively: you instruct the editor to make
a change, the editor does it, and then you request another change.

You can edit a file that does not exist; when you do so, you create the file online,
and can modify it as you enter it.

To file a file means to write a file you are editing back onto a disk, incorporating
any changes you made during the editing session. When you issue the FILE
subcommand to write a file, you are no longer in the environment of the eMS
editor, but are returned to the eMS environment. You can, however, write a file to
disk and then continue editing it, by using the SA VB subcommand.

An editing session is the period of time during which a file is in your virtual storage
area, from the moment you issue the EDIT command and the editor responds
EDIT: until you issue the FILE or QUIT subcommands to return to the eMS
command environment.

When you issue the EDIT command you must specify the filename and filetype of
the file you want to edit. If you issue:

edit test file

eMS searches your A-disk and its extensions for a file with the identification TEST
FILE. If the file is not found, eMS assumes that you want to create the file and
issues the message:

NEW FILE:
EDIT:

to inform you that the file does not already exist.

If the file exists on a disk other than your A-disk and its extensions, or if you want
to create a file to write on a read/write disk other than your A-disk, you must
specify the filemode of the file:

edit test file b

In this example, your B-disk and its extensions are searched for the file TEST
FILE.

After you issue the EDIT command, you are in edit mode, or the environment of
the eMS editor. If you have specified the filename and filetype of a file that

Appendix A. The eMS Editor A-I

Writing a File Onto Disk

A-2 VM/SP eMS User's Guide

already exists, you can now use EDIT subcommands to make changes or
corrections to lines in that file. If you want to add records to the file, as you would
if you are creating a new file, issue the EDIT subcommand:

input

to enter input mode. Every line that you enter is considered a data line to be
written into the disk file. For most filetypes, the editor translates all of your input
data to uppercase characters, regardless of how you enter it. For example, if you
create a file and enter input mode as follows:

edit myfile test
NEW FILE:
EDIT:
input
INPUT:
This is a file I am
learning to create with the CMS editor.

the lines are written into the file as:

THIS IS A FILE I AM
LEARNING TO CREATE WITH THE CMS EDITOR.

You can use the VM/SP logical line editing symbols to modify data lines as you
enter them.

To return to edit mode to modify a file or to terminate the edit session, you must
press the Return key on a null line. If you have just entered a data line, for
example, and your terminal's typing element or cursor is positioned at the last
character you entered, you must press the Return key once to enter the data line,
and a second time to enter a null line.

You may also use the logical line end symbol to enter a null line; for example:

last line of input#

Both of these lines cause you to return to edit mode from input mode.

If you do not enter a null line, but enter an EDIT subcommand or CMS command,
the command line is written into your file as input. The only exception to this is a
line that begins with the characters #CP. These characters indicate that the
command is to be passed immediately to CP for processing.

A file you create and the modifications that you make to it during an edit session
are not automatically written to a disk file. To save the results, you can do the
following:

• Periodically issue the subcommand:

save

to write onto disk the contents of the file as it exists when you issue the
subcommand. Periodically issuing this EDIT subcommand protects your data
against a system failure; you can be sure that changes you make are not lost.

EDIT Subcommands

At the beginning of the edit session, issue the AUTOSA VE subcommand, with
a number:

autosave 10

Then, for every tenth change or addition to the file, the editor issues an
automatic save request, which writes the file onto disk.

• At the end of the edit session, issue the subcommand:

file

This subcommand terminates the CMS editor session, writes the file onto disk,
replacing a previous file by that name (if one existed), and returns you to the
CMS environment.

You can return to the edit environment by issuing the EDIT command, specifying a
different file or the same file.

The editor decides which disk to write the file onto according to the following
hierarchy:

1. If you specify a file mode on the FILE or SAVE subcommand line, the file is
written onto the specified disk.

2. If the current filemode of the file is the mode of a read/write disk, the file is
written onto that disk. (If you have not specified a filemode letter, it defaults
to your A -disk.)

3. If the filemode is the mode of a read-only extension of a read/write disk, the
file is written onto the read/write parent disk.

4. If the filemode is the mode of a read-only disk that is not an extension of a
read/write disk, the editor cannot write the file and issues an error message.

See "Changing File Identifiers" for information on how you can tell the editor what
disk to use when writing a file.

If you are editing a file and decide, after making several changes, that you do not
wish to save the changes, you can use the subcommand:

quit

No changes that you made since you last used the SAVE subcommand (or the
editor last issued an automatic save for you) are retained. If you have just begun
an edit session, and have made no changes at all to a file, and for some reason you
do not want to edit it at all (for example, you misspelled the name, or want to
change a CMS setting before editing the file), you can use the QUIT subcommand
instead of the FILE subcommand to terminate the edit session and return to eMS.

A file must have at least one line of data in order to be written.

While you are in the edit environment, you can issue any EDIT subcommand or
macro. An edit macro is an EXEC file that contains a sequence of EDIT

Appendix A. The eMS Editor A-3

Entering EDIT Subcommands

A-4 VM/SP eMS User's Guide

subcommands that execute as a unit. You can create your own EDIT
subcommands with the eMS EXEC facility. EDIT subcommands provide a variety
of functions. You can:

• Position the current line pointer at a particular line, or record, in a file.

• Control which columns of a file are·displayed or searched during an editing
session.

• Modify data lines.

• Describe the characteristics that a file and its individual records will have.

• Automatically write and update sequence numbers for fixed-length records.

• Edit files by line number.

• Control the editing session.

Like CMS commands, EDIT subcommands have a subcommand name and some
have operands. In most cases, a subcommand name (or its truncation) can be
separated from its operands by one or more blanks, or no blanks. For example, the
subcommand lines:

type 5
ty 5
t5

are equivalent.

Several subcommands also use delimiters, which enclose a character string that you
want the editor to operate on. For example, the CHANGE subcommand can be
entered:

change/apple/pearl

The diagonal (I) delimits the character strings APPLE and PEAR. For the
subcommands CHANGE, LOCATE, and DSTRING, the first nonblank: character
following the subcommand name (or its truncation) is considered the delimiter. No
blank is required following the subcommand name. In the subcommand:

locate $vm/$

the dollar sign ($) is the delimiter. You cannot use a I in this case, since the
diagonal is part of the character string you want to locate.

When you enter these subcommands, you may omit the final delimiter; for
example:

dstring/csect

You must enter the final delimiter, however, when you specify a global change with
the CHANGE subcommand.

For the FIND and OVERLAY subcommands, additional blanks following the
subcommand names are interpreted as arguments. The subcommand:

?EDIT:

The Current Line Pointer

find Pudding

requests the editor to locate the line that has" Pudding" in columns 1 through 9.
Initial blanks are considered part of the character string.

An asterisk, when used with an EDIT subcommand, may mean "to the end of the
file" or "to the record length." For example:

delete*

deletes all of the lines in a file, beginning with the current line.

verify *

indicates that the editor should display the entire length of records.

When you make an error entering an EDIT subcommand, the editor displays the
message:

?EDIT: line ...

where line ... is the line, as you entered it, that the editor does not understand.

When you begin an editing session, a file is copied into virtual storage; in the case
of a new file, virtual storage is acquired for the file you are creating. In either case,
you can picture the file as a series of records, or lines; these lines are available to
you, one at a time, for you to modify or delete. You can also insert new lines or
records following any line that is already in the file.

The line that you are currently editing is pointed to by the current line pointer. On
a display terminal, this line is highlighted.

What you do during an editing session is:

• Position the current line pointer to access the line you want to edit.

• Edit the line: change character strings in it, delete it or insert new records
following it.

• Position the line pointer at the next line you want to edit.

When you are editing a file and you issue an EDIT subcommand that either
changes the position of the line pointer or that changes a line, the current line or
the changed line (or lines) is displayed. You can also display the current line by
using the TYPE subcommand:

type

If you want to examine more than one line in your file, you can use the TYPE
subcommand with a numeric parameter. If you enter:

type 10

the current line and the nine lines that follow it are displayed; the line pointer then
stays positioned at the last line that was displayed.

Appendix A. The eMS Editor A-5

A·6 VM/SP eMS User's Guide

You can move the line pointer up or down in your file.

UP indicates a location toward the beginning of the file (the first record);

DOWN indicates a location toward the end of the file (the last record).

You use the EDIT sub commands UP and DOWN to move the line pointer up or
down one or more lines. For example:

up 5

moves the current line pointer to a line five lines closer to the beginning of the file,
and:

down

moves the pointer to point at the next sequential record in the file.

You can also request that the line pointer be placed at the beginning, or top of the
file, or at the end, or bottom of the file. When you issue the subcommand:

top

you receive the message:

TOF:

and the line pointer is positioned at a null line that is always at the top of the file.
This null line exists only during your editing session; it is not filed on disk when you
end the editing session. When you issue the subcommand:

bottom

the current line pointer is positioned at the last record in the file. If you now enter
input mode, all lines that you enter are appended to the end of the file.

If the current line pointer is at the bottom of the file and you issue the DOWN
subcommand, you receive the message:

EOF:

and the current line pointer is positioned at the end of file, following the last
record.

When you are adding records to your file, the current line pointer is always
pointing at the line you last entered. When you delete a line from a file, the line
pointer moves down to point to the next line down in the file.

Going from edit mode to input mode does not change the current line pointer. If
you are creating a new file and you move the current line pointer to make
corrections to the lines that you have entered, you must issue the BOTTOM
subcommand to begin entering more lines at the end of the file.

The current line pointer is also moved as the result of the LOCATE and FIND
subcommands.

FIND is used to get to a line when you know the characters at the beginning
of the line.

For example, if you want to change the line:

BAXTER J.F. 065941 ACCNTNT

you could first search for it by using the subcommand:

find baxter

LOCATE is used to get to a line when you do not know the first characters on a
line.

You can issue the LOCATE subcommand like this:

locate laccntntl

Both of these subcommands work only in a top-to-bottom direction: you cannot
use them to position the line pointer above the current line. If you use the FIND or
LOCATE subcommands and the target (the character string you seek) is not
found, the editor displays a message, and positions the line pointer at the end of the
file. Subsequently, if you reissue the subcommand, the editor starts searching at
the top of the file.

In a situation like that above, or in a case where you are repetitively entering the
same LOCATE or FIND subcommand Of, for example, there are many
occurrences of the same character string, but you seek a particular occurrence) you
can use the = (REUSE) subcommand. To use the example above, you are looking
for a line that contains the string ONCE UPON A TIME, but you do not know that
it is above the current line. When you issue the subcommand:

locate lonce upon a timel

the editor does not locate the line, and responds:

NOT FOUND
EOF:

If you enter:

the editor searches again for the same string, beginning this time at the top of the
file, and locates the line:

, 'ONCE UPON A TIME" IS A COMMON

This may still not be the line you are looking for. You can, again, enter:

The LOCATE subcommand is executed again. This time, the editor might locate
the line:

A STORY THAT STARTED ONCE UPON A TIME

Appendix A. The eMS Editor A· 7

Figure A-Ion page A-8 illustrates a simpleCMS file, and indicates how the
current line pointer would be positioned following a sequence of EDIT
subcommands.

Line-Number Editing:

CLP

Some fixed-length files are suitable for editing by referencing line numbers instead
of character strings. The EDIT subcommands that allow you to change the line
pointer position by line number are discussed under "Line-Number Editing."

EDIT PPRINT EXEC

---> TOF:
0 (null line)
1 &CONTROL OFF
2 &P=
3 &IF.&1EQ &EXIT 100
4 &FN = &1
5 &IF &1 EQ ? &GOTO -TELL
6 &NFN = &CONCAT $ &1
7 &IF .&2 EQ . &EXIT 200
8 &FT = &2
9 &FM = &3

10 &IF .&3 NE &SKIP 2
11 &FM = A
12 &SKIP 3
13 &IF &3 NE (&SKIP 2
14 &FM = A
15 &P = (
16 &CONTROL ALL
17 COpy &FN &FT &FM &NFN &FT A (UNPACK
18 PRINT &NFN &FT A &P &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14
19 ERASE &NFN &FT A
20 &EXIT
21 -TELL &TYPE THIS EXEC PRINTS A LISTING FROM PACKED FORMAT

EOF:

The line numbers represented are symbolic: they are not an actual
part of the file, but are used below to indicate at which line the
current line pointer is positioned after execution of the EDIT
subcommand indicated.

Subcommand

DOWN 5
UP
LOCATE /UNP/
TYPE 3
BOTTOM
DOWN
FIND -
TOP
CHANGE /EQ/EQ/
DELETE 2
INPUT *

6

CLP Position
---> 0
---> 5
---> 4
---> 17
---> 19
---> 21
---> EOF:
---> 21
---> 0
---> 5
---> 7 (lines numbered 5 and 6 are deleted)
---> the line just entered (between 7 and 8)

Figure A-t. Positioning the Current Line Pointer

Verification and Search Columns

A-8 VM/SP eMS User's Guide,

There are two EDIT subcommands you can use to control what you and the editor
"see" in a file.

VERIFY controls what you see displayed.

ZONE controls what columns the editor searches.

Normally, when you edit a file, every request that you make of the editor results in
the display of one or more lines at your terminal. If you do not want to see the
lines, you can specify:

verify off

Alternatively, if you want to see only particular columns in a file, you can specify
the columns you wish to have displayed:

verify 1 30

Some filetypes have default values set for verification, which usually include those
columns in the file that contain text or data, and exclude columns that contain
sequence numbers. If a verification column is less than the record length, you can
specify:

verify *

to indicate that you want to see all columns displayed.

In conjunction with the VERIFY subcommand, you can use the ZONE
subcommand to tell the editor within which columns it can search or modify data.
When you issue the subcommand:

zone 20 30

The editor ignores all text in columns 1-19 and 31 to the end of the record when it
searches lines for LOCATE, CHANGE, ALTER, and FIND subcommands. You
cannot unintentionally modify data outside of these fields; you must change the
zones in order to operate on any other data.

The zone setting also controls the truncation column for records when you are
using the CHANGE subcommand; for more details, see "Setting Truncation
Limits."

Changing, Deleting, and Adding Lines

You can change character strings. in individual.lines of data with the CHANGE
subcommand. A character string may be any length, or it may be a null string.
Any of the characters on your terminal keyboard, including blanks, are valid
characters. The following example shows a simple data line and the cumulative
effect of CHANGE subcommands.

ABC ABC ABC

is the initial data line.

CHANGE /ABC/XYZ/

changes the first occurrence of the character string" ABC" to the string "XYZ."

XYZ ABC ABC

CHANGE /ABC//

Appendix: A. The eMS Editor A-9

The ALTER Subcommand:

A-to VM/SP eMS User's Guide

deletes the character string" ABC" and concatenates the characters on each side of
it.

XYZ ABC

CHANGE //ABC/

inserts the string "ABC" at the beginning of the line.

ABCXYZ ABC

CHANGE /XYZ /XYZ/

deletes one blank character following "XYZ."

ABCXYZ ABC

CHANGE /C/C /

adds a blank following the first occurrence of the character "C."

ABC XYZ ABC

is the final line.

You can use the ALTER subcommand to change a single character; the ALTER
subcommand allows you to specify a hexadecimal value so that you can include
characters in your files for which there are no keyboard equivalents. Once in your
file, these characters appear during editing as nonprintable blanks. For example, if
you input the line:

IF A = B THEN

in edit mode and then issue the subcommand:

alter = 8e

the line is displayed:

IF A B THEN

If you sub~equently print the file containing this line on a printer equipped to
handle special characters, the line appears as:

IF A S; B THEN

since X'8C' is the hexadecimal value of the special character.

Either or both of the operands on the ALTER subcommand can be hexadecimal or
character values. To change the X'8C' to another character, for example <, you
could issue either:

alter 8e 4e
-- or
alter 8e <

The OVERLAY Subcommand:

Global Changes

The OVERLAY subcommand allows you to replace characters in a line by spacing
the terminal's typing element or cursor to a particular character position to make
character-for-character replacements, or overlays. For example, given the line:

ABCDEF

the subcommand:

overlay xyz

results in the line:

XYZDEF

A blank entered on an OVERLAY line indicates that the corresponding character
is not to be changed; to replace a character with a blank, use an underscore
character (_). Given the above line, XYZDEF, the subcommand:

overlay __ 3

results in:

DE3

(The "D" is preceded by blanks in columns 1, 2, and 3.)

You can make global or repetitive changes with the CHANGE and ALTER
subcommands. On these subcommand lines, you can include operands that
indicate:

• The number of lines to be searched for a character or character string. An
asterisk (*) indicates that all lines, from the current line to the end of the file,
are to be searched.

• Whether only the first occurrence or all occurrences on each line are to be
modified. An asterisk (*) indicates all occurrences. If you do not specify an
asterisk, only the first occurrence on any line is changed.

For example, if you are creating a file that uses the (.) special character (X'AF')
and you do not want to use the ALTER subcommand each time you need to enter
the .; you could use the character .., as a substitute each time you need to enter a •.
When you are finished entering input, move the current line pointer to the top of
the file, and issue the global ALTER subcommand:

top#alter , af * *

All occurrences of the character .., are changed to X' AF' . The current line pointer
is positioned at the end of the file.

When you use a global CHANGE subcommand, you must be sure to use the final
delimiter on the subcommand line. For example:

change /hannible/hannibal/ 5

Appendix A. The eMS Editor A-tt

Deleting Lines

A-12 VM/SP eMS User's Guide

This subcommand changes the first occurrence of the string "HANNIBLE" on the
current line and the four lines immediately following it.

You can also make global changes with the OVERLAY subcommand, by issuing a
REPEAT subcommand just prior to the OVERLAY subcommand. Use the
REPEAT subcommand to indicate how many lines you want to be affected. For
example, if you are editing a file containing the three lines:

A
B
C

with the current line pointer at line "A," issuing the subcommands:

repeat 3
overlay

results in:

A
B
C

The current line pointer is now positioned at the line beginning with the character
"C."

You delete lines from a file with the DELETE subcommand; to delete more than
one line, specify the number of lines:

delete 6

Or, if you want to delete all the lines from the current line to the end of the file, use
an asterisk (*):

delete *

If you want· to delete an undetermined number of lines, up to a particular character
string, you can use the DSTRING subcommand:

dstring /weather/

When this subcommand is entered, all the lines from and including the current line
down to and including the line just above the line containing the character string
"WEATHER" are deleted. The current line pointer is positioned at the line that
has "WEATHER" on it.

If you want to replace a line with another line, you can use the REPLACE
subcommand:

replace *******

The current line is deleted andthe line "*******" is inserted in its place. The
current line pointer is not moved.

To replace an existing line with many new lines, you can issue the REPLACE
subcommand with no new data line:

Inserting Lines

replace

The editor deletes the current line and enters input mode.

You can insert a single line of data between existing lines using the INPUT
subcommand followed by the line of data you want inserted. For example:

input * this subroutine is for testing only

inserts a single line following the current line. If you want to insert many lines, you
can issue the INPUT subcommand to enter input mode.

You can also add new lines to a file by using the GETFILE subcommand. This
allows you to copy lines from other files to include in the file you are editing or
creating. For example:

getfile single items c

inserts all the lines in the file SINGLE ITEMS C immediately following the current
line pointer. The line pointer is positioned at the last line that was read in. You
could also specify:

getfile double items c 10 25

to copy 25 lines, beginning with the tenth line, from the file DOUBLE ITEMS C.

The $MOVE and $DUP EDIT macros provide two additional ways of adding lines
into a file in a particular position. The $MOVE macro moves lines from one place
in a file to another, and deletes them from their former position. For example, if
you want to move 10 lines, beginning with the current line, to follow a line 9 lines
above the current line, you can enter:

$move 10 up 8

The $DUP macro duplicates the current line a specified number of times, and
inserts the new lines immediately following the current line. For example:

$dup 3

creates 3 copies of the current line, and leaves the current line pointer positioned at
the last copy.

Describing Data Flle Characteristics

When you issue the EDIT command to create a new file, the editor checks the
filetype. If it is one of the reserved filetypes, the editor may assign particular
attributes to it, which can simplify the editing process for you. The default
attributes assigned to most filetypes are as follows:

• Fixed-length, 80-character records

• All alphabetic characters are translated to uppercase, regardless of how they
are entered

• Input lines are truncated in column 80

Appendix A. The eMS Editor A-13

Record Length

A-14 VM/SP eMS User's Guide

• Tab settings are in columns 1,6,11,16,21, ... 51,61, and so on, and the tab
characters are expanded to blanks

Records are not serialized

The filetypes for some CMS commands and for the language processors deviate
from these default values. Some of the attributes assigned to files and how you can
adjust them to suit your needs are discussed below.

You can specify the logical record length of a file you are creating on the EDIT
command line:

edit new file (lrecl 130

If you do not specify a record length, the editor assumes the following defaults:

• For editing old files, the existing record length is used.
For creating new files, the following default values are in effect:

Filetype Record Length Format

EXEC 80 characters Variable
FREEFORT 81 characters Variable
LISTING 121 characters Variable
SCRIPT 132 characters Variable
VSBDATA 132 characters Variable
All others 80 Fixed

If you edit a variable-length file and the existing record length is less than the
default for the filetype, the record length is taken from the default value.

When you use the LRECL option of the EDIT command you can override these
default record lengths; you can also change the record lengths of existing files to
make them larger, but not smaller.

If you try to override the record length of an existing file and make it smaller, the
editor displays an error message, and you must issue the EDIT command again with
a larger record length. For example, suppose you have on your B-disk a file named
MYFILE FREEFOR T, which was created with the default record length of 81. If
you try to edit that file by issuing: .

edit myfile free fort b (lrecl 72

the editor displays the message:

GIVE A LARGER RECORD LENGTH.

You must then issue the EDIT command again and either specify a length of 81 or
more, or allow it to default to the current record length of the file.

You can use the COPYFILE command to increase or decrease the record length of
a file before you edit it. For example, if you have fixed-length, 132-character
records in a file, and you want to truncate all the records at column 80 and create a
file with 80-character records, you could issue the command:

copyfile extra funds a (lrecl 80

Long Records

Record Length and File Size

Record Format

The largest record you can edit with the editor is 160 characters. A file with record
length up to 160 bytes (for example, a listing file created by a DOS program) can
be displayed and edited.

The largest record you can create with the CMS editor, however, is 130 characters
using a 3270 display terminal and 134 characters using a typewriter terminal such
as a 2741 or 1050. If you enter more than 130 characters on a 3270, the record is
truncated to 130 characters when you press the Enter key.

Note: As the line is truncated to 130 characters, the CMS editor will not
know the actual line length entered, and will not issue the "TRUNCATED"
message. If you type more than 134 characters on a line using a typewriter
terminal, CP generates an attention interruption to your virtual machine
and the input line is lost when you press the Return Key.

For most purposes, you will not need to create records longer than 130 characters.
If it is necessary, you can expand a record that you have entered. You do this by
issuing the CHANGE subcommand with operands, to add more characters to the
record (for example, by changing a 1-character string to a 31-character string).
However, if a record is longer than 130 characters, the CHANGE subcommand
without operands will cause truncation to 130·characters.

You cannot create a record that is longer than the record length of the file. For
example, if the file you are editing has a default record length of 80, or if you
specified LRECL 80 when you created the file, the editor truncates all records to
80 characters.

There is a relationship between the record length of a file and the maximum
number of records it can contain. F(gure A-2 shows the approximate number of
records, rounded to the nearest hundred, that the CMS editor can handle in a
virtual machine with different amounts of virtual storage.

Record
Length

80 Characters
120 Characters
132 Characters
160 Characters

Virtual
Machine
Size
320K

1700
1100
1100
900

S12K

3800
2600
2400
2000

Figure A-l. Number of Records Handled by the eMS Editor

768K

6800
4700
4300
3600

1024K

9800
6800
6200
5100

With the CMS editor, you can create either fixed- or variable-length files. Except
for the filetypes EXEC, LISTING, FREEFORT, SCRIPT, and VSBDATA, all the
files you create have fixed-length records, by default. You can change the format
of a file at any time during an editing session by using the RECFM subcommand:

recfm v

Appendix A. The eMS Editor A-15

Using Special Characters

Alphabetic Characters

Tab Characters

A-16 VM/SP eMS User's Guide

This changes the record format to variable-length. This does not change the record
length; in order to add new records with a greater length, you must write the file
onto disk and then reissue the EDIT command using the LRECL option.

The COPYFILE command also has an RECFM option, so that you can change the
record format of a file without editing it. The command:

copyfile * requests al (recfm v trunc

changes the record formats of all the files with a filetype of REQUESTS on your
A-disk to variable-length. The TRUNC option specifies that you want trailing
blanks removed from each of the records. When you are editing a file with
variable-length records, trailing blanks are truncated when you write the file onto
disk with the FILE or SAVE subcommand. (In VSBDATA files, however, blanks
are not truncated.)

The IMAGE and CASE subcommands control how data, once entered on an input
line, is going to be represented in a file. The specific characters affected, and the
subcommands that control their representation, are:

• Alphabetic characters: CASE subcommand
• Tab characters (X'05'): IMAGE subcommand (ON and OFF operands)
• Backspaces (X'16'): IMAGE subcommand (CANON operand)

If you are using a terminal that has only uppercase characters, you do not need to
use the CASE subcommand; all of the alphabetic characters you enter are
uppercase. On terminals equipped with both uppercase and lowercase letters, all
lowercase alphabetic characters are converted to uppercase in your file, regardless
of how you enter them. If you are creating a file and you want it to contain both
uppercase and lowercase letters you can use the subcommand:

case m

The "M" stands for "mixed." This attribute is not stored with the file on disk. If
you create a new file, and you issue the CASE M subcommand, all the lowercase
characters you enter remain in lowercase. If you subsequently file the file and later
edit it again, you must issue the CASE M subcommand again to locate or enter
lowercase data.

There are two reserved filetypes for which uppercase and lowercase is the default.
These are SCRIPT and MEMO, both of which are text or document-oriented
filetypes. For most programming applications, you do not need to use lowercase
letters.

Logical tab settings indicate the column positions where fields within a record
begin. These logical tab settings do not necessarily correspond to the physical tab
settings on a typewriter terminal. What happens when you press the Tab key on a
typewriter terminal depends on whether the image setting is on :i1 ,image setting,
effect on tab characters or off. The default for all filetypes except SCRIPT is
IMAGE ON. You can change the default by issuing the subcommand:

image off

Filetype
ASSEMBLE, MACRO, COPY,
UPDATE, UPDT, ASM3705,
MACLIB, XEDIT

AMSERV, ESERV

FORTRAN

FREEPORT

DIRECT, JOB

EXEC, CNTRL

COBOL

BASIC, BAS DATA , VSBASIC

Figure A-3. Default Tab Settings

If the image setting is on, when you press the Tab key the editor replaces the tab
characters with blanks, starting at the column where you pressed the Tab key, and
ending at the last column before the next logical tab setting. The next character
entered after the tab becomes the first character of the next field. For example, if
you enter:

tabset 1 15

and then enter a line that begins with a tab character, the first data character
following the tab is written into the file in column 15, regardless of the tab stop on
your terminal.

If the image setting is off, the tab character, X'05', is inserted in the record, just as
any other data character is inserted. No blanks are inserted.

If you want to insert a tab character (X'05') into a record and the image setting is
on, you can do one of the following:

1. Set IMAGE OFF before you enter or edit the record, and then use the Tab key
as a character key.

2. Enter some other character at the appropriate place in the record, and use the
ALTER subcommand to alter that character to a X'05'.

Setting Tabs: When you create a file, there are logical tab settings in effect, so that
you do not need to set them. The default values for the language processors
correspond to the columns used by those processors. If you want to change them,
or if you are creating a file with a nonreserved filetype, you may want to set them
yourself. Use the TABSET subcommand, for example:

tabset 1 12 20 28 72

Then, regardless of what physical tab stops are in effect for your terminal, when
you press the Tab key with image setting ON, the data you enter is spaced to the
appropriate columns.

See Figure A-3 for the default tab settings used by the eMS editor.

Default Tab Settings
1 , 1O, 16, 30, 35, 40, 45, 50, 55, 60, 65, 70

2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
60
1 , 7, 10, 15, 2O, 25, 3O, 80

9, 15, 18, 23, 33, 38, 81

1, 5, 10, 15, 2O, 25, 30, 35, 40, 45, 50, 55,
60, 65, 7O, 75

1 , 5, 8, 17 , 27, 31

1 , 8, 12, 20, 28, 36, 44, 68, 72, 80

7, 1O, 15, 20, 25, 30, 80

Appendix A. The eMS Editor A-17

Filetype
VSBDATA, SCRIPT, MEMO,
LISTING, *******
PLI, PLIOPT

Figure A-3. Default Tab Settings

Backspaces

A-18 VM/SP eMS User's Guide

Default Tab Settings
1 , 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70" 75, 8,0, 85,90" 95, 100, 105, 110,
115, 120

2, 4, 7, 10, 13, 16, 19, 22, 25, 31 , 37, 43,
49, 55, 79, 80

When you are specifying tab settings for files, the first tab setting you specify
should be the column in which you want your data to begin. The editor will not
allow you to place data in a column preceding this one. For example, if you issue:

tabset 5 10 15 20

and enter an input line:

input This is a line

Columns 1, 2, 3, and 4 contain blanks; text begins in column 5.

For most of your applications, you do not need to underscore or overstrike
characters or character strings. If you are using a typewriter terminal and are
typing files that use backspaces and underscores, you should use either the IMAGE
OFF or IMAGE CANON subcommandsso that the editor handles the backspaces
properly. IMAGE CANON is the default value for SCRIPT files.

CANON means that regardless of how the characters are keyed in (characters,
backspaces, underscores), the editor orders, or canonizes, the characters in the file
as: character-backspace-underscore, character-backspace-underscore, and so on.
lf, for example, you want an input line to look like:

ABC

You could enter it as:

ABC, 3 backspaces, 3 underscores
- or -

3 underscores, 3 backspaces, ABC

A typewriter types out the line in the following order:

A backspace, underscore
B backspace, underscore
C backspace, underscore, which results in:
ABC

If you need to modify a line that has backspaces, and you do not want to rekey all
of the characters, backspaces, and overstrike characters in a CHANGE or
REPLACE subcommand, you can use the ALTER subcommand to alter all of the
backspaces to some other character and use a global CHANGE command. For
example, the following sequences shows how to delete all of the backspace
characters on a line:

AAAAA
alter 16 + 1 *

+A +A +A +A +A
change-/_+//-l *
AAAAA

Setting Truncation Limits

This technique may also be useful on a display terminal.

Every CMS file that you edit has a truncation column setting: this column
represents the last character position in a record into which you can enter data.
When you try to input a record that is longer than the truncation column, the
record is truncated, and the editor sends you a message telling you that it has been
truncated.

You can change the truncation column setting with the TRUNC subcommand. For
example, if you are creating a file with a record length of 80 and wish to insert
some records that do not extend beyond column 20, you could issue the
subcommand:

trunc 20

Then, when you enter data lines, any line that is longer than 20 characters is
truncated and the editor sends you a message. If you are entering data in input
mode, your virtual machine remains in input mode.

When you use the CHANGE subcommand to modify records, the column at which
truncation occurs is determined by the current zone setting. If you change a
character string in a line to a longer string, and the resultant line extends beyond
the current end zone, you receive the message:

TRUNCATED.

If you need to create a line longer than the current end zone setting, use the ZONE
subcommand to increase the setting. The subcommand:

zone 1 *

extends the zone to the record length of the file. If the end zone already equals the
record length, you have to write the file onto disk and reissue the EDIT
subcommand specifying a longer record length.

For most filetypes, the truncation and end zone columns are the same as the record
length. For some filetypes, however, data is truncated short of the record length.
The default truncation and end zone columns are:

Column Filetype

71 ASSEMBLE, MACRO, UPDATE, UPDTxxxx
72 AMSERV, COBOL, DIRECT, FORTRAN, PLI, PLIOPT

All other filetypes are truncated at their record length.

You can, when creating files for your own uses, set truncation columns so that data
does not extend beyond particular columns.

Entering a Continuation Character in Column 72

When you are using the editor to enter source records for an assembler language
program and you need to enter a continuation character in column 72, or
whenever you want to enter data outside a particular truncation setting, you can
use the following technique.

Appendix A. The eMS Editor A-19

Serializing Records

A-20 VM/SP eMS User's Guide

Note: This technique will not work if CANON is specified on the IMAGE
.subcommand.

1. Change the truncation setting to 72, so that the editor does not truncate the
continuation character: .

trunc 72

2. Use the TAB SET subcommand to set the left margin at column 72:

tabset 72

3. Use the OVERLAY subcommand to overlay an asterisk in column 72:

overlay *

Since the left margin is set at 72, the OVERLAY subcommand line results in
the character * being placed in column 72.

4. Restore the editor truncation and tab settings:

trunc 71
tabset 1 10 16 31 36 41 51 61 71 81

Note: If you issue the PRESERVE subcommand before you change the truncation
and tab settings, then after you enter the OVERLA Y subcommand, you can
restore them with the RESTORE subcommand. See "Preserving and Restoring
CMS Editor Settings. H

Use the $MARK Edit Macro: Another way to insert a continuation character is to
use the $MARK edit macro. You can find out if the $MARK edit macro is
available on your system by entering,. in the CMS or CMS subset environment:

listfile $mark exec *

If it is not available on your system, you can create the $MARK edit macro for
your own use. See "Writing Edit Macros" in Appendix B.

If you have the $MARK macro, then when you need to enter a continuation
character, you can enter 'a null line to get into edit mode, issue the command:

$mark

and then return to input mode to continue entering text.

Some CMS files that you create are automatically serialized for you. This means
that columns 73 to 80 of each record contain an identifier in the form:

cccxxxxx

where ccc are the first three characters of the filename and xxxxx is a sequence
number. Sequence numbers begin at 00010 and are incremented by 10.

The filetypes that are automatically serialized in columns 73 to 80 are:

ASSEMBLE
DIRECT
MACRO
FORTRAN
COBOL
PLI
PLIOPT
UPDATE
UPDTxxxx

You can serialize any file that has fixed-length, 80-character records by using the
SERIAL subcommand:

serial on

The SERIAL subcommand can also be used to:

• Assign a particular three-character identifier:

serial abc

• Specify that all eight bytes of the sequence field be used to contain numbers:

serial all

• Specify a sequence increment other than 10:

serial on 100
-- or -
serial ccc 100

Indicate that no sequence numbers are to be assigned to new records being
inserted:

serial off

When you create a file or edit a file with sequence numbers, the sequence numbers
are not written or updated until you issue a FILE or SA VE subcommand. Because
the end verification columns for the filetypes that are automatically serialized are
the same as their truncation columns, you do not see the serial numbers unless you
specify:

verify *
-- or -
verify 80

Although the serial numbers are not displayed while you edit the file, they do
appear on your output listings or printer files.

If you are editing files with the following filetypes:

BASIC
VSBASIC
FREE FORT

the sequence numbers are on the left. For BASIC and VSBASIC files, columns
1-5 are used; numbers are blank-padded to the left. For FREEFORT files, the
sequence numbers use columns 1-8, and are zero-padded to the left. To edit these
files, you should use line-number editing, which is discussed next.

Appendix A. The eMS Editor A-21

Line-Number Editing

A-22 VM/SP eMS User's Guide

To edit a file by line numbers means that when you are adding new lines to a file or
referencing lines that you wish to change, you refer to them by their line, or
sequence numbers, rather than by character strings. You can use right line-number
editing only on files with fixed-length, 80-character records.

If you want to edit by line numbers, issue the subcommand:

linemode right
-- or -

linemode left

where:

right indicates that the sequence numbers are on the right, in columns 76-80

and

left indicates you want sequence numbers on the left in columns 1-5.

LINEMODE LEFT is the default for BASIC, VSBASIC, and FREEFORT files.
You do not have to specify it. You must specify LINEMODE for files with other
filetypes.

If you specify LINEMODE RIGHT to use line-number editing on a typewriter
terminal, the line numbers are displayed on the left, as a convenience, while you
edit the file.

When you are using line-number editing in input mode, you are prompted to enter
lines; the line numbers are in increments of 10. For example, when you are
creating a new file, you are prompted for the first line number as follows:

10

On a typewriter terminal, you enter your input line following the 10. When you
press the carriage return, you are prompted again:

20

and you continue entering lines in this manner until you enter a null line.

You can change the prompting increment to a larger or smaller number with the
PROMPT subcommand:

prompt 100

When you are in edit mode you can locate a line by giving its line number:

700

This is the nnnnnsubcommand. In line-number editing, you use it instead of the
INPUT subcommand to insert a single line of text. For example:

905 x = a * b

inserts the text line "X = A * B" in the proper sequence in the file. If you use
"nnnnn text" specifying the number of a line that a]ready exists, that line is
replaced; the current line pointer is moved to point to it.

Renumbering Lines

The EDIT subcommands that you normally use for context editing, such as
CHANGE, ALTER, LOCATE, UP, DOWN, and so forth, can also be used when
you are line-number editing; their operation does not change.

When you are using line-number editing, the editor uses the prompting increment
set by the PROMPT subcommand. However, when you begin adding lines of data
between existing lines, the editor uses an algorithm to select a line number between
the current line number and the next line number. If a prompting number cannot
be generated because the current line number and the next line number differ only
by one, the editor displays the message:

RENUMBER LINES

and you must resequence the line numbers in the file before you can continue
line-number editing.

You can resequence the line numbers in one of three ways:

1. If you are a VSBASIC or FREEFORT user, you may use the RENUM
subcommand:

renum

This subcommand resolves all references to lines that are renumbered.

2. If you are using right-handed line-number editing, you must:

a. Tum off line-number editing:

linemode off

b. If you want to change the three-character identifier or specify
eight-character sequence numbers, issue the SERIAL subcommand, for
example:

serial all

If you want to use the default serialization setting, you do not need to issue
the SERIAL subcommand.

c. Issue the SA VB subcommand:

save

d. Reissue the LINEMODE subcommand and continue line-number editing:

linemode right

3. If you are using left-handed line-number editing for a filetype other than
VSBASIC or FREEFORT, you must manually change individual line numbers
using EDIT subcommands. In order to modify the line numbers, you must
change the zone setting and the tab setting:

zone 1 *
tabset 1 6

so that you can place data in columns 1 through 6.

Appendix A. The eMS Editor A-23

Controlling the CMS Editor

When you are using right-handed line-number editing, and a FILE, SA VB, or
automatic save request is issued, the editor does not resequence the serial numbers,
but displays the message:

RESERIALIZATION SUPPRESSED

so that the lines numbers that are currently saved on disk match the line numbers in
the file. You must cancel line-number editing (using the LINEMODE OFF
subcommand) before you can issue a FILE or SA VE subcommand if you want to
update the sequence numbers.

There are a number of EDIT subcommands that you can use to maximize the use
of the editor in CMS. A few techniques are suggested here; as you become more
familiar with VM/SP and CMS you will develop additional techniques for your
own applications.

Communicating with CMS and CP

A-24 VM/SP eMS User's Guide

Often during a terminal session, you may need to issue a CMS command or a CP
command. You can issue certain eMS commands and most CP commands without
terminating the edit session. The EDIT subcommand CMS places your virtual
machine in the CMS subset mode of the editor, where you can issue CMS
commands that do not modify your virtual storage. Remember that the editor is
using your virtual storage; if you overlay it with any other command or program,
you will not be able to finish your editing.

One occasion when you may want to enter CMS subset is when you want to issue a
GETFILE subcommand for a file on one of your virtual disks and you have not
accessed the disk. You can enter:

cms

The editor responds:

CMS SUBSET

Then you can enter:

access 193 b/a
return
get setup script b

The special CMS SUBSET command RETURN returns your virtual machine to
edit mode.

You can enter CP commands from CMS subset, or you can issue them directly
from edit mode or input mode with the #CP function. For example, if you are
inputting lines into a file and another user sends you a message, you can reply
without leaving input mode:

#cp m apr i will call you later

If you enter #CP without specifying a command line, you receive the message:

CP

Changing File Identifiers

which indicates that your virtual machine is in the CP command environment, and
you can issue CP commands. You would not, however, want to issue any CP
command that would modify your virtual storage or alter the status of the disk on
which you want to write the file.

To return to edit or input mode from CP, use the CP command, BEGIN. If you
are working at a display terminal and the screen image does not reappear, enter the
TYPE command to cause the editor to redisplay the screen.

There are several methods you can use to change a file identifier before writing the
file onto disk. You can use the FNAME and FMODE subcommands to change the
filename or filemode, or you can issue a FILE or SA VB subcommand specifying a
new file identifier.

For example, if you want to create several copies of a file while you are using the
editor, you can issue a series of FNAME subcommands, followed by SAVE
subcommands, as follows:

edit test file
EDIT:

fn test1#save

fn test2#save

fn test3#file

Or, you could issue the SA VB and FILE subcommands as follows:

edit test file

save test1

save test2

file test3

In both of the preceding examples, when the FILE subcommand is executed, there
are files named TEST FILE, TEST! FILE, TEST2 FILE, and TEST3 FILE. The
original TEST FILE is unchanged.

To change the file mode letter of a disk, use the FMODE subcommand. You can
do this in cases where you have begun editing a file that is on a read-only disk, and
want to write it. Since you cannot write a file onto a read-only disk, you can issue
the FMODE subcommand to change the mode before filing it:

fmode a
file

Appendix A. The eMS Editor A-25

Or, you can use the FILE (or SAVE) subcommand specifying a complete file
identifier:

file test file a

You should remember, however, that when you write a file onto disk, it replaces
any existing file that has the same identifier. The editor does not issue any warning
or informational messages. If you are changing a file identifier while you are
editing the file, you must be careful that you do not unintentionally overlay existing
files. To verify the existence of a file, you can enter CMS subset and issue the
STATE or LISTFILE commands.

Controlling the CMS Editor's Displays

A-26 VM/SP eMS User's Guide

When you are using a typewriter terminal, you may not always want to see the
editor verify the results of each of your subcommands. Particularly when you are
making global changes, you may not want to see each line displayed as it is
changed. You can issue the VERIFY subcommand with the OFF operand to
instruct the editor not to display anything unless specifically requested. After you
issue:

verify off

lines that are normally displayed as a result of a subcommand that moves the
current line pointer (UP, DOWN, TOP, BOTTOM, and so forth), or that changes a
line (CHANGE, ALTER, and so forth), are not displayed. If the current line
pointer moves to the end of the file, however, the editor always displays the EOF:
message.

If you are editing with verification off, then you must be particularly careful to stay
aware of the position of your current line pointer. You can display the current line
at any time using the TYPE subcommand:

type

Long and Short Error Messages: When you enter an invalid subcommand while you
are using the editor, the editor normally responds with the error message:

?EDIT: line ...

displaying the line that it did not recognize. If you prefer, you can issue the
SHORT subcommand so that instead of receiving the long form of the error, you
receive the short form, which is:

...,

When you issue an invalid edit macro request (any line that begins with a $), you
receive the message:

...,$

To resume receiving the long form of the error message, use the LONG
subcommand:

long

LONG and SHORT control the display of the error message regardless of whether
you are editing with verification on or off.

On a display terminal, all EDIT messages that are displayed at the top of the
screen, including error messages and "?EDIT:" messages, are highlighted.

Preserving and Restoring eMS Editor Settings

x, Y, =, ? Subcommands

The PRESERVE and RESTORE subcommands are used together; the
PRESERVE subcommand saves the settings of the EDIT subcommands that
control the file format, message and verification display, and file identifier. If you
are editing a file and you want to. temporarily change some of these settings, issue
the PRESERVE subcommand to save their current status. When you have finished
your temporary edit project, issue the RESTORE subcommand to restore the
settings.

For example, if you are editing a SCRIPT .file and want to change the image setting
to create a particular format, you can enter:

preserve
ima.ge on
tabset 1 15 40 60 72
zone 1 72
trunc 72

When you have finished entering data using these settings, you can issue the
subcommand:

restore

to restore the default settings for SCRIPT filetypes.

The X, Y, =, and? sub commands all perform very simple functions that can help
you to extend the language of the C,M$ editor. They allow you to manipulate,
reuse, or interrogate EDIT subcommands.

If you have an editing project in which you have to execute the same subcommand
a number of times, you can assign it to the X or Y subcommands, as follows:

x locate /insert here/
y getfile insert file c

Each time that you enter the X subcommand:

x

the command line LOCATE /INSERT HERE/ is executed, and every time you,
enter the Y subcommand:

y

the GETFILE subcommand is executed.

When you specify a number following an X or Y subcommand, the subcommand
assigned to X or Y is executed the specified number of times; for example:

x locate /aa/
x 10

the LOCATE subcommand line is executed 10 times before you can enter another
EDIT subcommand.

Appendix A. The eMS Editor A-27

Another method of re-executing a particular subcommand is to use the = (REUSE)
subcommand. For example, if you enter:

locate lardl
AARDVARK

the LOCATE subcommand is re-executed seven times.

What the = (REUSE) subcommand actually does is to stack the subcommand in
the console stack. Since CMS, and the editor, read from the console stack before
reading from the terminal, the lines in the stack execute before a read request is
presented to the terminal. When you enter multiple equal signs, the subcommand is
stacked once for each equal sign you enter.

You can also stack an additional EDIT subcommand following an equal sign.
The subcommand line is also stacked, but it is stacked LIFO (last-in, first-out) so
that it executes before the stacked subcommand. For example, if you enter:

delete
= next

a DELETE subcommand is executed, then a DELETE subcommand is stacked,
and a NEXT subcommand is stacked in front of it. Then the stacked lines are read
in and executed. The above sequence has the same effect as if you enter:

delete
next
delete

In addition to stacking the last subcommand executed, you can also find out what it
was, using the? subcommand. For example, if you enter:

next 10
?

the editor displays:

NEXT 10

Since the subcommand line NEXT 10 was the last subcommand entered, if you
enter an = subcommand, it is executed again. You cannot stack a ? subcommand.

Note: The? subcommand, on a display terminal, copies the last EDIT
subcommand into the user input area, where you may modify it before
re-entering it.

What To Do When You Run Out of Space

A-28 VM/SP eMS User's Guide

There are two situations that may prevent you from continuing an edit session or
from writing a file onto disk. You should be aware of these situations, know how
to avoid them, and how to recover from them, should they occur.

When you issue the EDIT command to edit a file, the editor copies the file into
virtual storage. If it is a large file, or you have made many additions to it, the editor
may run out of storage space. If it does, it issues the message:

AVAILABLE STORAGE IS NOW FULL

When this happens, you cannot make any changes or additions to the file unless
you first delete some lines. If you attempt to add a line, the editor issues the
message:

NO ROOM

If you were entering data in input mode, your virtual machine is returned to edit
mode, and you may receive the message:

STACKED LINES CLEARED

which indicates that any additional lines you entered are cleared and will not be
processed.

You should use the FILE subcommand to write the file onto disk. If you want to
continue editing, you should see that the editor has more storage space to work
with. To do this, you can find out how large your virtual machine is and then
increase its size. To find out the size, issue the CP QUERY command:

cp query virtual storage

If the response is:

STORAGE = 256K

You might want to redefine your storage to S12K. Use the CP command DEFINE,
as follows:

cp define storage 512k

This command resets your virtual machine, and you must issue the CP IPL
command to reload the eMS system before you can continue editing.

If a file is very large, the editor may not have enough space to allow you to edit it
using the EDIT command. The message:

DMSEDI132S FILE 'fn ft fm' TOO LARGE

indicates that you must obtain more storage space before you can edit the file. If
this is the case, or if you are editing large files, you should redefine your storage
before beginning the terminal session. If this happens consistently, you should see
your installation support personnel about having the directory entry for your userid
updated so that you have a large storage size to begin with.

Splitting eMS Files Into Smaller Files

If the file you are editing is too large, and the data it contains does not have to be
in one file, you can split the file into smaller files, so that it is easier to work with.
Two of the methods you can use to do this are described below.

Use the COPYFILE Command: You can use the COPYFILE command to copy
portions of a file into separate files, and then delete the copied lines from the
original file. For example, if you have a file named TEST FILE that has 1000
records, and you want to split it into four files, you could enter:

copyfile test file a test1 file a (from 1 for 250
copyfile test file a test2 file a (from 251 for 250
copyfile test file a test3 file a (from 501 for 250
copyfile test file a test4 file a (from 751 for 250

Appendix A. The CMS Editor A-29

When Your Disk Is Full

A-30 VM/SP eMS User's Guide

When these COPYFILE commands are complete, you have four files containing
the information from the original TEST FILE, which you can erase:

erase test file

Use the Editor: If you use the editor to create smaller files, you can edit them as
you copy them, that is, if you have other changes that you want to make to the
data. To copy files with the editor, you use the GETFILE subcommand. Using the
file TEST FILE as an example, you might enter:

edit test1 file
getfile test file a 1 250

.
file
edit test2 file
getfile test file a 251 250

Again, you could erase the original TEST FILE when you are through with your
edit session.

When you enter a FILE or SA VB subcommand or when an automatic save request
is issued, the editor writes a copy of the file you are editing onto disk, and names it
EDIT CMSUTI. If this causes the disk to become full, you receive the message:

DMSBWR170S DISK 'mode (cuu) , IS FULL

The editor erases the workfile, and issues the message:

SET NEW FILEMODE, OR ENTER CMS SUBSET AND CLEAR SOME SPACE

The original file (as last written onto disk) remains unchanged. You can use the
CMS subcommand to enter CMS subset, and erase any files that you do not need.
You can use the LISTFILE command to list the files on the disk, then the ERASE
command to erase the unwanted files.

If you cannot erase any of the files on the disk, there are several alternate recovery
paths you can take:

1. If you have another read/write disk accessed, you can use the FMODE
subcommand to change the filemode of the file, so that when you file it, it is
written to the other disk. If you have a read/write disk that is not accessed,
you can access it in CMS subset. After filing the file on the second disk, erase
the original copy, and then use the COPYFILE command to transfer the file
back to its original disk.

2. If you do not have any other read/write disk in your virtual machine, you may
be able to transfer some of your files to another user, using either the
SENDFILE, PUNCH or DISK command in CMS subset. When the files have
been read onto the other user's disk, you can erase them from your disk. Then,
return to edit mode and issue the FILE subcommand.

3. In eMS subset, erase the original disk file (if it existed), then return to edit
mode and file the copy that you are editing. You should not use this method
unless absolutely necessary, since any unexpected problems may result in the
loss of both the disk file and the copy.

After you use the FILE subcommand to write the file onto disk, you should
continue erasing any files you no longer need.

Summary of eMS EDIT Sub commands

Subcommand
Format
ALTER

AUTOSAVE

BACKWARD

BOTTOM

CASE

CHANGE

CMS

DELETE
DOWN;

DSTRING

FILE

FIND

FMODE

FNAME

FORMAT

FORWARD

GETFILE

IMAGE

INPUT

LINEMODE

LOCATE

LONG

NEXT

The EDIT subcommands, and their formats, are shown in Figure A-4. Refer to
the VM / SP CMS Command and Macro Reference for complete details.

Function
Scans the next n records of the file, altering the
specified character, either once in each line or for
all occurrences in the line.
Automatically saves the file on disk after the
indicated number of lines have been processed.

Points the current line pointer to a line above the
line currently pointed to.

Makes the last line of the file the current line.

Indicates whether translation to uppercase is to be
done, or displays the current status.

Changes string1 to string2 for n records or to EOF,
either for the first occurrence in each line or for
all occurrences.

Enters CMS subset command mode.
Deletes n lines or to the end of the file (*) •

Points to the nth line from the current line.

Deletes all lines from the current line down to the
line containing the indicated string.

Saves the file being edited on disk or changes its
identifiers. Returns to CMS.

Searches for the given line.

Resets or displays the filemode.

Resets or displays the filename.

Switches the 3270 terminal between display mode and
line mode. (3270 only)

Points to the nth line after the current line.

Inserts a portion or all of the specified file after
the current line.

Expands text into line images or displays current
line settings.

Inserts a line in the file or enters input mode.

Sets or displays current setting of line-number
editing.

Scans file from next line for first occurrence of
'string' .

Enters long error message mode.

Points the the nth line down from the current line.

Figure A-4 (Part 1 of 3). Summary of eMS EDIT Subcommands and Macros

Appendix A. The eMS Editor A-31

Subcommand
Format
OVERLAY

PRESERVE

PROMPT

QUIT

RECFM
RENUM

REPEAT

REPLACE

RESTORE

RETURN

REUSE

SAVE

SCROLL

SERIAL

SHORT

STACK

TABSET

TOP

TRUNC

TYPE

UP

VERIFY

{XIY}

ZONE

?

nnnnn or
nnnnnnnn

$DUP

$ MOVE

Function
Replaces all or part of the current line.

Saves the current mode settings.
Sets or displays line number increment. Initial
setting is 10.

Terminates edit session with no updates incorporated
since last save request.

Sets or displays record format for subsequent files.

Recomputes line numbers for VSBASIC and FREEFORT
source files.

Executes the following OVERLAY subcommand n times.

Replaces the current line or deletes the current
line and enters input mode.

Restores editor settings to values last preserved.

Returns to edit environment from CMS subset.

Stacks (LIFO) the last EDIT subcommand that does not
start with REUSE or the question mark (?) and then
executes any given EDIT subcommand.

Saves the file on disk and stays in the edit
environment.

Displays a number of screens of data above or below
the current line (3270 only).

Turns serialization on or off in column 73 through
80.

Enters short error message mode.

Stacks data lines or EDIT subcommands in the console
input stack.

Sets logical tab stops.

Moves the current line pointer to the null line at
the top of the file.

Sets or displays the column of truncation. An
asterisk (*) indicates the logical record length.
Displays m lines beginning with the current line.
Each line-may be truncated to n characters.

Moves the current line pointer toward the top of the
file.

Sets, displays, or resets verification. An asterisk
(*) indicates the logical record length.

Assigns to X or Y the given EDIT subcommand or
executes the previously assigned subcommand n times.

Sets or displays the columns between which editing
is to take place.

Displays the last EDIT subcommand, except = or ?
Locates the line specified by the given line number
and inserts text, if given.

Duplicates the current line n times. $DUP is an
EDIT macro.

Moves up g lines or down ~ lines. $MOVE is an EDIT
macro.

Figure A-4 (Part 2 of 3). Summary of eMS EDIT Subcommands and Macros

A-32 VM/SP eMS User's Guide

Appendix B. The CMS EXEC Processor

The CMS EXEC Processor

A CMS EXEC processor is a CMS file that contains executable statements. The
statements may be CMS or CP commands or EXEC control statements. The
execution can be conditionally controlled with additional EXEC statements, or it
may contain no EXEC statements at all. In its simplest form, an EXEC file may
conta.in only one record, have no variables, and expect no arguments to be passed
to it. In its most complex form, it can contain thousands of records and may
resemble a program written in a high-level programming language. As a CMS user,
you should become familiar with the EXEC processor and use it often to tailor
CMS commands to your own needs, as well as to create your own commands.

The following is an example of a simple EXEC procedure that might be named
RDLINKS EXEC:

CP LINK DEWEY 191 291 RR DEWEY
CP LINK LIBRARY 192 292 RR DEWEY
ACCESS 291 B/A
ACC 292 CIA

When you enter:

rdlinks

each command line contained in the file RDLINKS EXEC is executed.

You could also create an EXEC procedure that functions like a cataloged
procedure, and set it up to receive an argument, so that it executes somewhat
differently each time you invoke it. For example, a file named ASM EXEC
contains the following:

ASSEMBLE &1
PRINT &1 LISTING
LOAD &1
START

If you invoke the EXEC specifying the name of an assembler language source file,
such as:

asm myprog

the procedure executes as follows:

ASSEMBLE MYPROG
PRINT MYPROG LISTING
LOAD MYPROG
START

The variable &1 in the EXEC file is substituted with the argument you enter when
you execute the EXEC. As many as 30 arguments can be passed to an EXEC in
this manner; the variables thus set range from &1 through &30.

Appendix B. The CMS EXEC Processor B-1

Creating EXEC Files

Invoking EXEC Files

B-2 VM/SP eMS User's Guide

EXEC files can be created with the CMS editors, by punching cards, or by using
CMS commands or programs. When you create a file with the editor, records are,
by default, variable-length with a logical record length of 80 characters. EXEC
can process variable-length files of up to 130 characters. To create a
variable-length EXEC file larger than 80 characters, use the LRECL option of the
EDIT command:

edit new exec a (lrecl 130

To convert a variable-length file to a fixed-length file, you can edit the EXEC file
and issue the subcommand:

recfm f

Or, you can use the COPYFILE command:

copyfile old exec a (recfm f

If you use fixed-length EXEC files, you should be aware that the EXEC interpreter
only processes the first 72 characters of each record in a fixed-length file,
regardless of the record length. You can, however, enter command or data lines
that are longer than 72 characters to be processed by using the &BEGST ACK,
&BEGTYPE, &BEGPUNCH, and &BEGEMSG control statements preceding the
line(s) you want to be processed. If you specify &BEGPUNCH ALL, EXEC
processes lines up to 80 characters long; if you specify &BEGTYPE ALL,
&BEGSTACK ALL, or &BEGEMSG ALL, EXEC processes lines up to 130
characters.

In variable-length EXEC files, there are no such restrictions; lines up to 130
characters are processed in their entirety.

Two CMS commands create EXEC files. One is LISTFILE, which can be invoked
with the EXEC option; it creates a file named CMS EXEC. The uses of CMS
EXEC files are discussed under the heading "CMS EXECs and How To Use
Them." The CMS/DOS command LISTIO creates an EXEC file named $LISTIO
EXEC, which creates records for each of the system and programmer logical unit
assignments. The LISTIO command and the $LISTIO EXEC are described in
Chapter 10, "Developing VSE Programs Under CMS" on page 10-1.

EXEC procedures are invoked when you enter the filename of the EXEC file. You
can precede the filename on the command line with the CMS command, EXEC.
For example:

exec test type list

where TEST is the filename of the EXEC file and TYPE and LIST are arguments
(&1 and &2) you are passing to the EXEC. For example, an EXEC named
PREPEDIT would be executed when you entered either:

prepedit newfile replace
-- or --
exec prepedit newfile replace

You must precede the EXEC filename with the EXEC command when:

PROFILE EXECs

• You invoke an EXEC from within another EXEC.
• You invoke an EXEC from a program.

You have the implied EXEC function set off for your virtual machine.

The implied EXEC function is controlled by the SET command. If you issue the
command:

set irnpex off

then you must use the EXEC command to invoke an EXEC procedure. The
default setting is ON; you almost never need to change it.

An EXEC procedure having a synonym defined for it can be invoked by its
synonym if the implied EXEC (IMPEX) function is on. However, within an
EXEC procedure, only the EXEC filename can be used. A synonym is not
recognized within an EXEC since the synonym tables are not searched during
EXEC processing.

There is one EXEC file that you never have to specifically invoke. This is a
PROFILE EXEC, which is automatically executed after you load CMS, when your
A-disk is accessed. PROFILE EXECs are discussed next.

A PROFILE EXEC must have a filename of PROFILE. It can contain the CP and
CMS commands you normally issue at the start of every terminal session. For
example:

Commands that describe your terminal characteristics, such as:

CP SET LINEDIT ON
SET BLIP *
SET RDYMSG SMSG
SYNONYM MYSYN

• Commands that spool your printer and punch for particular classes or
characteristics:

CP SPOOL E CLASS S HOLD

• Commands to initialize macro and text libraries that you commonly use:

GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIB

• Commands to access disks that are a permanent part of your configuration:

ACCESS 196 B

A PROFILE EXEC file that contains all of these commands might look like this:

&CONTROL OFF
CP SET LINEDIT ON
CP SPOOL E CLASS S HOLD
SET RDYMSG SMSG
SET BLIP *
SYNONYM MYSYN
GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIB
ACCESS 196 B

Appendix B. The eMS EXEC Processor B-3

&CONTROL OFF is an EXEC control statement that specifies that the CP and
CMS command lines are not to be displayed on your terminal before they execute.

A PROFILE EXEC can be as simple or as complex as you require. As an EXEC
file, it can contain any valid EXEC control statements or CMS commands. The
only thing that makes it special is its filename, PROFILE, which causes it to be
executed the first time you press the Return key after loading CMS.

Executing Your PROFILE EXEC

Usually, the first thing you do after loading CMS is to type a CMS command.
When you press the Return key to enter this command or if you enter a null line,
CMS searches your A-disk for a file with a filename of PROFILE and a filetype of
EXEC. If such a file exists, it is executed before the first CMS command you enter
is executed. Because you do not do anything special to cause your PROFILE
EXEC to execute, you can say that it executes "automatically."

You can prevent your PROFILE EXEC from executing automatically by entering:

access (noprof)

as the first CMS command after you IPL CMS. You can enter:

profile

at any time during a CMS session to execute the PROFILE EXEC, if you had
accessed your A-disk without it, or if you had made changes to it and wanted to
execute it, or if you had changed your virtual machine.

CMS EXECs and How To Use Them

B-4 VM/SP eMS User's Guide

A file named CMS EXEC is created when you use the EXEC option of the
LISTFILE command; for example:

listfile pr* document a (exec

The usual display that results from this LISTFILE command is a list of all the files
on your A-disk with a filetype of DOCUMENT that have filenames beginning with
the characters "PR." CMS, however, creates a CMS EXEC file that contains a
record for each file that would be listed. The records are in the format:

&1 &2 filename filetype filemode

Column 1 is blank. Now, if you have the following files on your A-disk:

PRFILE1 DOCUMENT
PRFILE2 DOCUMENT
PRFILE3 DOCUMENT
PRFILE4 DOCUMENT

The CMS EXEC file would contain the records:

&1 &2 PRFILE1
&1 &2 PRFILE2
&1 &2 PRFILE3
&1 &2 PRFILE4

DOCUMENT A1
DOCUMEN'r A 1
DOCUMENT A1
DOCUMENT A1

In the preceding lines, &1 and &2 are variables that can receive values from
arguments you pass to the EXEC when you execute it. For example, if you
execute this CMS EXEC by issuing:

ems disk dump

the EXEC interpreter substitutes, on each line, the variable &1 with the DISK and
the variable &2 with DUMP and executes the commands:

DISK DUMP PRFILE1 DOCUMENT A1
DISK DUMP PRFILE2 DOCUMENT A1
DISK DUMP PRFILE3 DOCUMENT A1
DISK DUMP PRFILE4 DOCUMENT A1

You can use this technique to transfer a number of files to another user. You
should remember to spool your punch with the CONT option before you execute
the EXEC, so that all of the files are transferred as a single spool file; for example:

cp spool d cont library

Then, after executing the EXEC file, close the punch:

cp spool d nocont close

If you pass only one argument to your CMS EXEC file, the variable &2 is set to a
null string. For example:

ems erase

executes as:

ERASE PRFILE1
ERASE PRFILE2
ERASE PRFILE3
ERASE PRFILE4

DOCUMENT A1
DOCUMENT A1
DOCUMENT A1
DOCUMENT A1

You could also use a CMS EXEC to obtain a listing of files on a virtual disk. If
you want, you can use one of the other LISTFILE command options with the
EXEC option to get more information about the files listed. For example:

listfile * * a (exec date

produces a CMS EXEC that contains, in addition to the filename, filetype, and
filemode of each file listed, the file format and size, and date information. You can
then use the PRINT command to obtain a printed copy:

print ems exec

Before printing this file, you may want to use the SORT command to sort the list
into alphabetic order by filename, by filetype, or both; for example:

sort ems exec a cmssort exec a

When you are prompted to enter sort fields, you can enter:

1 25

The file CMSSORT EXEC that is created contains a completely alphabetical list.

Appendix B. The CMS EXEC Processor B-5

Modifying CMS EXECs

A CMS EXEC is like any other CMS file; you can edit it, erase it, rename it, or
change it. If you have created it to catalog a particular group of files, you might
want to rename it; each time you use the LISTFILE command with the EXEC
option a CMS EXEC is created, and any old CMS EXEC is erased. To rename it,
you can use the CMS RENAME command, or, if you are editing it, you can
rename it when you file it:

edit ems exec
input &control off
file 'prfile exec

You might also want to edit a CMS EXEC to provide it with more numeric
variables; for example:

edit ems exec
input &control off
input cp spool printer class s cont
change /a1/a1 &3 &4 &5 &6/ *

input cp spool printer nocont
input cp close printer
file prfile exec
prfile print % (cc

When this EXEC is executed, the variable &1 is substituted with PRINT, the
variable &2 is set to a null string (the special character % indicates that you are not
passing an argument to it), and &3 and &4 are set to the PRINT command option
(CC, so that the files in the EXEC print with carriage control.

The substitution goes as follows:

&1
PRINT

&2
null

&3
(

&4
cc

The CP commands that are inserted ensure that the files print as a single spool file,
and not individually.

Summary of the CMS EXEC Language Facilities

B-6 VM/SP eMS User's Guide

The CMS EXEC processor, or interpreter, recognizes keywords that begin with the
special character ampersand (&). Keywords may indicate:

• Control statements
• Built-in functions
• Special variables
• Arguments

You may also define your own variables in an EXEC file; the CMS EXEC
interpreter can process them as long as they begin with an ampersand. The
following pages briefly discuss the kinds of things you can do with an EXEC,
introduce you to the control statements, built-in functions, and special variables,
and give some examples of how to use the CMS EXEC processor. For specific
information on the format and usage rules for any EXEC statement or variable,
consult the VM/SP CMS Command and Macro Reference.

In general the following rules apply to entering lines into an EXEC procedure:

Arguments and Variables

1. Most input lines (with a few exceptions) are scanned during execution of the
EXEC. Every word on a line is padded or truncated to fit into an
eight-character "token." So, for example, if you enter the EXEC control
statement:

&type today is wednesday

when this EXEC is executed, the line is displayed at your terminal:

TODAY IS WEDNESDA

The lines that are not tokenized are those that begin with an * (and are
considered comments), and those that follow an &BEGEMSG, &BEGPUNCH,
&BEGSTACK, or &BEGTYPE control statement, up to an &END statement.

2. You can enter input lines beginning in any column. The only time that you
must enter an EXEC line beginning in column 1 is when you are using the
&END control statement to terminate a series of lines being punched, stacked,
or typed.

Most EXEC processing is contingent on the value of variable expressions. A
variable expression in an EXEC is a symbol that begins with an ampersand (&).
When the EXEC interpreter processes a line and encounters a variable symbol, it
substitutes the variable with a predefined value, if the symbol has been defined.
Symbols can be defined in three ways:

1. when passed as arguments to the EXEC,

2. by assignment statements,

3. interactively, as a result of a &READ ARGS or &READ V ARS control
statement.

You can pass arguments to EXEC files when you invoke them. Each argument
you enter is assigned a variable name: the first argument is &1, the second is &2,
the third is &3, and so on. You can assign values for up to 30 variables this way.
For example, if an EXEC is invoked:

scan alpha 2 notype print

the variable &1 has a value of ALPHA, the variable &2 has a value of 2, &3 is
NOTYPE and &4 is PRINT. These values remain in effect until you change them.

You can test the arguments passed in several ways. The special variable &INDEX
contains the number of arguments received. Using the example SCAN ALPHA 2
NOTYPE PRINT, the statement:

&IF &INDEX EQ 4 &GOTO -SET

would be true, since four arguments were entered, so a branch to the label -SET is
taken.

You can change the values of arguments or assign values using the &ARGS control
statement. For example:

&IF &INDEX EQ 0 &ARGS ABC

Appendix B. The CMS EXEC Processor B-7

Assignment Statements

B-8 VM/SP eMS User's Guide

assigns the values A, B, and C to the variables &1, &2, and &3 when the EXEC is
invoked without any arguments.

Use the &READ ARGS control statement to enter arguments interactively. For
example, if your EXEC file contains the line:

&READ ARGS

when this line is executed, the EXEC issues a read to your virtual machine so that
you can enter up to 30 arguments, to be assigned to the variables &1, &2, and so
on.

The words that form an executable statement are searched for the names of EXEC
variables. These variables are replaced by their values. This is done according to
the following steps:

1. Each word is inspected for ampersands, starting with the rightmost character of
the word and proceeding to the left.

2. If an ampersand is found, then it, with the rest of the word to the right, is taken
as the name of an EXEC variable and replaced (in the word) by its value. This
may increase or decrease the length of the word. Initially, all variables have a
null value, except:

a. The variables that represent the EXEC control words and predefined
functions, that are initialized to their own names (for example, the value of
"&IF" is "&IF").

b. The EXEC arguments, and the other predefined variables.

3. Inspection resumes at the next character to the left, and the procedure is
repeated from step 2 above, until the word is exhausted.

User-defined variable names begin with an ampersand (&) and contain up to seven
additional characters. These variables can contain numeric or alphameric data.
You define and initialize EXEC variables in assignment statements. In an
assignment statement, the first data item starts with an ampersand (&) and the
second data item is an equal sign (=). The value of the expression on the right side
of the equal sign is assigned to the variable named on the left of the equal sign.
For example:

&A = 35

is an assignment statement that assigns the numeric value 35 to the variable symbol
&A. A subsequent assignment statement might be:

&B = &A + 10

After this assignment statement executes, the value of &B would be 35 plus 10, or
45.

You can use the &READ control statement to assign variable names interactively.
For example, when the statement:

&READ VARS &NAME &AGE

Null Variables

is executed, the EXEC issues a read to your virtual machine, and you can enter a
line of data. The first two words, or tokens, you enter are assigned to the variable
symbols &NAME and &AGE, respectively.

Note: The data item immediately following the target of an assignment
statement must be an equal sign (=) and not an EXEC variable that has
the value of an equal sign. Conversely, if an equal sign is to be the first
data item following an EXEC control word, then it must be specified as an
EXEC variable that has the value of an equal sign and not as an equal sign;
otherwise, the statement is interpreted as an assignment statement and the
control word is thereafter treated as a variable.

If you use a variable name that has not been defined, the variable symbol is set to a
null string by the EXEC processor when the statement is executed. For example, if
you have entered only two arguments on the EXEC command line, then the
statement:

&IF &3 EQ CONT &ERROR &CONTINUE

is interpreted:

&IF EQ CONT &ERROR &CONTINUE

&ERROR and &CONTINUE are recognized by EXEC as control statements.
Since &3 is undefined, however, it is replaced by blanks and the resulting line
produces an error during EXEC processing. You can prevent the error, and allow
for null arguments or variables, by concatenating some other character with the
variable. A period is used most frequently:

&IF .&3 EQ .CONT &ERROR &CONTINUE

If &3 is undefined when this line is scanned, the result is:

&IF . EQ .CONT &ERROR &CONTINUE

which is a valid control statement line.

Built-in Functions and Special Variables

The EXEC built-in functions are similar to those of higher-level languages. You
can use the EXEC built-in functions to define variable symbols in an EXEC
procedure.

Figure B-1 summarizes the built-in functions. It shows, given the variable &A, the
values resulting in a variable &B when a built-in function is used to assign its value.
Notice that all of the built-in functions are used on the right-hand side of
assignment statements. Only the &LITERAL built-in function can be used in
control statements; for example:

&TYPE &LITERAL &A

Appendix B. The CMS EXEC Processor B-9

Function Usage Example &B

&A = 123

&CONCAT Concatenates tokens into a single &B= 12355
token. &CONCAT&A

55

&DATATYPE Assigns the data type (NUM or &B= NUM
CHAR) to the variable. &DATATYPE

&A

&LENGTH Assigns the length of a token to a &B= 3
variable. &LENGTH&A

&LITERAL Prohibits substitution of a variable &B= &A
symbol. &LITERAL&A

&SUBSTR Extracts a character string from a &B = &SUBSTR 23
token. &A22

Figure B-1. Summary of CMS EXEC Built-in Functions

Flow Control in an EXEC

B-IO VM/SP eMS User's Guide

An EXEC is processed line by line if a statement is encountered that passes control
to another line in the procedure, execution continues there and each line is, again,
executed sequentially. You can pass control with an &GOTO control statement:

&GOTO -BEGIN

where -BEGIN is a label. All labels in EXEC files must begin with a hyphen, and
must be the first token on a line. For example:

-LOOP

A label may have control statements or commands following it; for example:

-HERE &CONTINUE

which indicates that the processing is to continue with the next line, or

-END &EXIT

The &EXIT control statement indicates that the EXEC processor should terminate
execution of the EXEC and return control to CMS. You can also specify a return
code on the &EXIT control statement:

&EXIT 6

results in a "(00006)" following the "R" in the CMS ready message. If you invoke
a CMS command from the EXEC, you can specify that the return code from the
CMS command be used:

&EXIT &RETCODE

Since the &RETCODE special variable is set after each eMS command that is
executed, you can test it after any command to decide whether you want execution
to end. For example, you could use the &IF control statement to test it:

&IF &RETCODE NE 0 &EXIT &RETCODE

"&EXIT &RETCODE" places the value of the CMS return code in the CMS ready
message. You could place a line similar to the above following each of your CMS
command lines, or you could use the &ERROR control statement, that will cause
an exit as soon as an error is encountered:

&ERROR &EXIT &RETCODE

or you could use the &ERROR control statement to transfer control to some other
part of your EXEC:

&ERROR &GOTO -CHECK

-CHECK

Another way to transfer control to another line is to use the &SKIP control
statement:

&SKIP 10

transfers control to a line that is 10 lines below the &SKIP line. You can transfer
control above the current line as well:

&IF &X NE &Y &SKIP -3

Transferring control with &SKIP is faster, when an EXEC is executing, than it is
with &GOTO, but modifying your EXEC files becomes more difficult, particularly
when you add or delete many lines.

You can use combinations of &IF, &GOTO, and &SKIP to set up loops in an
EXEC. For example:

&X = 1
&IF &X = 4 &GOTO -ENDPRT
PRINT FILE&X TEST A
&X = &X + 1
&SKIP -3
-ENDPRT

Or, you can use the &LOOP control statement:

&X = 1
&LOOP 2 &X > 3
PRINT FILE&X TEST
&X = &X + 1
-ENDPRT

In both of these examples, a loop is established to print the files FILE 1 TEST,
FILE2 TEST, and FILE3 TEST. &X is initialized with a value of 1 and then
incremented within the loop. The loop executes until the value of &X is greater
than 3. As soon as this condition is met, control is passed to the label-ENDPRT.

Appendix B. The CMS EXEC Processor B-l1

Comparing Variable Symbols and Constants

Doing I/O With an EXEC

B-12 VM/SP eMS User's Guide

In an EXEC, you can test whether a certain condition is true, and then perform
some function based on the decision. Some examples have already appeared in this
section, such as:

&LOOP 3 &X EQ &Y

In this example, the value of the variable &X is tested for an equal comparison with
the value of the variable &Y. The loop is executed until the condition (&X equal to
&Y) is true.

The logical comparisons you can make are:

Condition Mnemonic Symbol

equal EQ =
not equal NE ..,=
greater than GT >
less than LT <
greater than or GE >=
equal to

less than or equal LE <=
to

Figure B-2. Logical Comparisons You can Make in EXEC

When you are testing a condition in an EXEC file, you can use either the
mnemonic or the symbol to represent the condition:

&IF &A LT &B &GOTO -NEXT

is the same as:

&IF &A < &B &GOTO -NEXT

You can communicate with your terminal using the &TYPE and &READ control
statements. Use &TYPE to display a line at your terminal:

&TYPE ASMBLNG &1 ASSEMBLE

When this line is processed, if the variable &1 has a value of PROGl, the line is
displayed as:

ASMBLNG PROG1 ASSEMBLE

Use the &READ control statement when you want to be able to enter data,
variables, or control statements into your EXEC file while it is executing. If you
use it with an &TYPE statement, for example:

&TYPE DO YOU WANT TO CONTINUE ?
&READ VARS &ANS

you could test the variable &ANS in your EXEC to find out how processing is to
continue.

Using Your Virtual Card Punch

The &BEGTYPE control statement can be followed by a sequence of lines you
want to be displayed at the terminal. For example, if you want to display ten lines
of data, instead of using ten &TYPE control statements, you could use:

&BEGTYPE
line1
line2

line10
&END

The &END control statement indicates the end of the lines to be typed. You can
also use the &BEGTYPE control statement when you want to type a line that
contains a word with more than eight characters in it; for example:

&BEGTYPE
TODAY IS WEDNESDAY
&END

The EXEC interpreter, however, does not perform substitutions on lines entered
this way. The lines:

&A = DOG
&BEGTYPE
MY &A IS NAMED FIDDLEFADDLE
&END

result in the display:

MY &A IS NAMED FIDDLEFADDLE

You must use the &TYPE statement when you want to display variable data; you
must use the &BEGTYPE control statement to display words with more than eight
characters.

To type null or blank lines at your terminal (to make output readable, for example),
you can use the &SP ACE control statement:

&SPACE 5

You can punch lines of tokens into your virtual card punch with the &PUNCH
control statement:

&PUNCH &NAME &TOTAL

When you want to punch more than one line of data, or a line that contains a word
of more than eight character~ in it, you should use the &BEGPUNCH control
statement preceding the lines you want to punch, and follow them with an &END
statement. The EXEC processor does not interpret these lines, however, so any
variable symbols you enter on these lines are not substituted.

When you punch lines from an EXEC procedure what you are actually doing is
creating a file in your virtual card punch. To release the file for processing, you
must close the punch:

cp close punch

Appendix B. The CMS EXEC Processor B-13

Stacking Lines

The destination of the file depends on how you have spooled your punch. If you
have spooled it to yourself, the file is placed in your virtual card reader, and you
can read it onto a virtual disk using the READ CARD command.

The EXEC control statements &STACK and &BEGST ACK allow you to stack
lines in your program stack, to be executed as soon as a read occurs in your virtual
machine. Stacking is useful when you use commands that require responses, for
example, the SORT command:

&STACK 1 20
SORT INFILE FILE A OUTFILE FILE A

When the SORT command is executed, a prompting message is issued, the virtual
machine read occurs, and the response that you have stacked is read. If you do not
stack a response to this command, your EXEC does not continue processing until
you enter the response from your terminal.

In the above example of the SORT command, you can suppress the prompting
message by issuing either the SET CMSTYPE HT command or &STACK HT
immediately before the SORT command. Restore normal terminal operations by
placing either a SET CMSTYPE RT command or &STACK RT after the SORT
command.

Stacking is useful in creating edit macros or in editing files from EXEC procedures.

Note: &ST ACK HT and SET CMSTYPE HT create the same effect when
interpreted by the CMS EXEC processor. Similarly, &STACK RT and
SET CMSTYPE RT are equivalent for the EXEC 2 processor. However,
when using EXEC 2, the commands &STACK HT and &STACK RT will
cause the characters "HT" and "RT" to be placed in the program stack but
will not affect the console output. Unless these characters are part of a
program or cleared from the stack, you will receive an "UNKNOWN
CP / CMS COMMAND" error message when they are read from the stack.

Monitoring EXEC Procedures

B-14 VM/SP eMS User's Guide

Two EXEC control statements, &CONTROL and &TIME, control how much
information is displayed at your terminal while your EXEC file is executing. This
display is called an execution summary.

Since you do not usually receive a CMS ready message after the execution of each
CMS command in an EXEC, you do not receive the timing information that is
provided with the ready message. If you want this timing information to appear,
you can specify:

&TIME ON

or you can type the CPU times at particular places by using:

&TIME TYPE

The &CONTROL control statement allows you to specify whether certain lines or
types of information are displayed during execution. By default, CP and CMS
commands are displayed before they are executed. If you do not wish to see them
displayed, you can specify:

&CONTROL OFF

You might find it useful, when you are debugging your EXECs, to use:

&CONTROL ALL

When you use this form, all EXEC statements, as well as all CP and CMS
commands, are displayed and you can see the variable substitutions being
performed and the branches being taken in a procedure.

Summary of CMS EXEC Control Statements

Figure B-3 summarizes CMS EXEC control statements.

Control
Statement Function

&variable Assigns a value to the symbol specified by &variable; the equal sign must
be preceded and followed by a blank.

&ARGS Redefines the variable symbols &1, &2 ... with the values of &argl, &arg2,
... , and resets the variable &INDEX.

&BEGEMSG Displays the following lines as CMS error messages, without scanning
them.

&BEGPUNCH Punches the following lines in the virtual card punch, without scanning
them.

&BEGSTACK Stacks the following lines in the terminal input buffer, without scanning
them.

&BEGTYPE Displays the following lines at the console, without scanning them.

&CONTINUE Provides a branch address for &ERROR, &GOTO, and other conditional
branching statements.

&CONTROL Sets, until further notice, the characteristics of the execution summary of
the EXEC, which is displayed at the console.

&EMSG Displays a line of tokens as a CMS error message.

&END Terminates a series of lines following an &BEGEMSG, &BEGPUNCH,
&BEGSTACK, or &BEGTYPE control statement.

&ERROR Executes the specified whenever a CMS command returns a nonzero
return code.

&EXIT Exits from the EXEC file with the given return code.

&GOTO Transfers control to the top of the EXEC file, to the given line, or to the
line starting with the given label.

&HEX Turns on or off hexadecimal conversion.

&IF Executes the specified statement if the condition is satisfied.

&LOOP Loops through the following Qlines, or down to (and including) the line
at label, for m times, or until the condition is satisfied.

&PUNCH Punches the specified tokens to your virtual card punch.

Figure B-3 (Part 1 of 2). Summary of CMS EXEC Control Statements

Appendix B. The CMS EXEC Processor B-15

Control
Statement Function

&READ Reads lines from the terminal or from the console stack. ARGS assigns
the tokens read to the variables &1, &2 ... V ARS assigns the tokens read
to the specified variable symbols.

&SKlP Transfers control forward or backward a specified number of lines.

&SPACE Displays blank lines at the terminal.

&STACK Stacks a line in the terminal input stack.

&TIME Displays timing information following the execution of CMS commands.

&TYPE Displays a line at the terminal.

Figure B-3 (Part 2 of 2). Summary of CMS EXEC Control Statements

B-16 VM/SP eMS User's Guide

Summary of CMS EXEC Special Variables

Variable

&n

&* and &$

&DISKx

&DISK *

&DISK?

&008

&EXEC

&GLOBAL

&GLOBALn

&INDEX

&LINENUM

&READFLAG

&RETCODE

&TYPEFLAG

Figure B-4 summarizes CMS EXEC special variables. In some cases you may
assign your own value to the EXEC special variable. The column entries in the
"Set by" column have the following meanings:

User Variables are assigned values by EXEC but you may modify them.

EXEC You may not modify these variables.

CMS You may assign a value to this variable but it is reset at the completion of
each CMS command.

Usage Set by

Arguments passed to an EXEC are assigned to the variables User
&1 through &30.

Test whether all (&*) or any (&$) of the arguments passed to EXEC
EXEC have a particular value.

Indicates whether the disk access at mode 'x' is a CMS OS, User
or DOS disk, or not accessed (CMS, OS, DOS, or NA).

Contains the mode letter of the first read/write disk in the User
CMS search order, or NONE if no read/write disk is
accessed.

Contains the mode letter of the read/write disk with the User
most available space or NONE, if no read/write disk is
accessed.

Indicates whether or not the CMS/DOS environment is User
active (ON or OFF).

Contains the filename of the EXEC file currently being EXEC
executed.

Has a value ranging from 1 to 19, to indicate the recursion EXEC
(nesting) level of the EXEC that is currently executing.

The variables &GLOBALI through &GLOBAL9 can contain User
integral numeric values, and can be passed among different
recursion levels. If not explicitly set, the variable will have a
value of 1.

Contains the number of arguments passed to the EXEC on EXEC
the command line or the number of arguments entered as a
result of an &ARGS or &READ ARGS control statement.

Contains the current line number in the EXEC. EXEC

Indicates whether (STACK) or not (CONSOLE) there are EXEC
lines stacked in the terminal input buffer (console stack).

Contains the return code from the most recently executed CMS
CMS command.

Indicates whether (RT) or not (HT) output is being EXEC
displayed at the console.

Figure 8-4 (Part 1 of 2). CMS EXEC Special Variables

Appendix B. The CMS EXEC Processor B-17

Variable Usage Set by

&0 Contains the name of the EXEC file. User

Figure B-4 (Part 2 of 2). CMS EXEC Special Variables

Building CMS EXEC Procedures

What is a Token?

B-18 VM/SP eMS User's Guide

This section discusses various techniques that you can use when you write CMS
EXEC procedures. The examples are intended only as suggestions. You should
not feel that they represent either the only way or the best way to achieve a
particular result. Many combinations and variations of control statements are
possible; in most cases, there are many ways to do the same thing.

This section is called "Building CMS EXEC Procedures" because you will often
find that once you have created an EXEC procedure and begun to use it, you
continually think of new applications or new uses for it. Using the CMS editor,
you may quickly build the additions and make the necessary changes. You are
encouraged to develop EXEC procedures to help you in all ,the phases of your
CMS work.

Note: If you are using EXEC 2, refer to VM / SP EXEC 2 Reference for
detailed information.

An executable statement is any line in an EXEC file that is processed by the
EXEC interpreter, including:

• CMS command lines
• EXEC control statements
• Assignment statements
• Null lines

Executable statements may appear by themselves on a line or as the object of
another executable statement, for example in an &IF or &LOOP control statement.
If you want to execute CP commands or other EXEC procedures in an EXEC, you
must use the CP and EXEC commands, respectively. CP commands are passed
directly to CP for processing.

All executable statements in an EXEC are scanned by the CMS scan routine. This
routine converts each word (words are delimited by blanks and parentheses) into
an eight-character quantity called a token. If a word contains more than eight
characters, it is truncated on the right. If it contains fewer than eight characters, it
is padded with blanks. When a parenthesis appears on the line, it is treated both as
a delimiter and as a token. For example, the line:

:TYPE WHAT IS YOUR PREFERENCE (REDIBLUE)?

scans as follows:

:TYPE WHAT IS YOUR PREFEREN (REDIBLUE) ?

After a line has been scanned, each token is scanned for ampersands and
substitutions are performed on any variable symbols in the tokens before the
statement is executed. After elimination of any null variables, the statement may
contain a maximum of 32 tokens.

Variables

Nonexecutable statements are lines that are not processed by the EXEC
interpreter, that is, comment lines (those that begin with an *), and data lines
following an &BEGEMSG, &BEGPUNCH, &BEGSTACK, or &BEGTYPE control
statement. Since these lines are not scanned, words are not truncated, and tokens
are neither formed nor substituted.

Since all executable statements in an EXEC are scanned, and the data items are
treated as tokens, the term "token" is used throughout this section to describe data
items before and after scanning. The VM / SP CMS Command and Macro
Reference, which contains the formats and descriptions of the EXEC control
statements, uses this convention as well. Therefore, as you create your EXEC
procedures, you may think of the items that you enter on an EXEC statement as
tokens, since that is how they are used by the EXEC interpreter.

To make the best use of the CMS EXEC facilities, you should have an
understanding of how the EXEC interpreter performs substitutions on variable
symbols contained in tokens. Some examples follow. For each example, the input
lines are shown as they would appear in an EXEC file and as they would appear
after being interpreted and executed by EXEC. Notes concerning substitution
follow each example.

Simple Substitution: Most of the EXEC examples in this publication contain
variable symbols that result in one-for-one substitution. Most of your variables,
too, will have a similar relationship.

Lines

&X == 123
&TYPE &X

After Substitution

&X == 123
&TYPE 123

The EXEC interpret~r accepts the variable symbol &X and assigns it the value 123.
In the second statement, &X is substituted with this value, and the control
statement &TYPE is recognized and executed.

Lines

&Y 456
&Z == &Y

After Substitution

&Y 456
&Z == 456

The symbol &Y is assigned a value of 456. In the second statement, the symbol &Y
is substituted with this value, and this value is assigned to &Z.

Subscripts for Variables: Since each token is scanned more than once for
ampersands, you can simulate subscripts by using two variable values in the same
token.

Lines

&1 == ALPHA
&2 == BETA
&INDEX1 == 1
&TYPE &&INDEX1
&INDEX1 == 2
&TYPE &&INDEX1

After Substitution

&1 == ALPHA
&2 == BETA
&INDEX1 == 1
&TYPE ALPHA
&INDEX1 == 2
&TYPE BETA

Appendix B. The CMS EXEC Processor B-19

B-20 VM/SP eMS User's Guide

In the statement &TYPE &&INDEX1, the token &INDEXI is scanned the first
time, and the value &INDEXI is substituted with the value 1. The token now
contains &1, which is substituted with the value ALPHA on a second scan. When
the value of &INDEXI is changed to 2, the value of &&INDEXI also changes.

Lines After Substitution

&I = 2 &I = 2
&X&I 5 &X2 = 5
&I = &I = 1
&X&I 2 &X1 = 2
&X = &X&I + &X&X&I &X = 2 + 5

In the statement &X&I = 5, analysis of the first token results in the substitution of
the symbol &1 with the value of 2. The symbol &X2 is assigned a value of 5.

The value of &1 is changed to 1, and the symbol &X 1 is assigned a value of 2.

In the last statement, &X = &X&I + &X&X&I, the value of &1 in the token &X&I is
replaced with 1, then the symbol &Xl is substituted with its value, which is 2. The
token &X&X&I is substituted after each of three scans: &1 is replaced with the
value 1, to yield the token &X&X 1. The symbol &X 1 has the value of 2, so the
token is reduced to &X2, which has a value of 5.

Compound Variable Symbols: Variable symbols may also be combined with
character strings.

Lines

&X = BEE
&TYPE HONEY&X
&TYPE ABUMBLE&X

After Substitution

&X = BEE
&TYPE HONEYBEE
&TYPE ABUMBLE

In the above example, the first symbol encountered in the scan of HONEY &X is
&X, which is substituted with the value &BEE. In the second &TYPE statement,
the X is truncated when the line is scanned; the symbol & is an undefined symbol
and is therefore set to blanks.

Lines

&X = HONEY
&Y = BEE
&TYPE &X&Y

After Substitution

&X = HONEY
&Y = BEE
&TYPE

In the above example, after the symbol &Y is substituted with the value BEE, the
token contains the symbol &XBEE, which is an undefined symbol, so the symbol is
discarded.

Lines

&123 = ABCDE
&X = 12345678
&TYPE ABLE&&X

After Substitution

&123 = ABCDE
&X = 12345678
&TYPE ABLEABCD

In this example, the substitution of &X in the token ABLE&&X results in the
character string ABLE&12345678, which is truncated to eight characters, or
ABLE&123. The scan continues, and &123 is substituted with the appropriate
value, to result in ABCDE. The token is again truncated to eight characters.

COllClltellldion of tokem: The &CONCAT built-in function is used to concatenate
two or more tokens.

Lines

&X = BB
&Y = &CONCAT AA &X CC
&TYPE &Y

After Substitution

&X = BB
&Y = &CONCAT AA BB CC
&TYPE AABBCC

In the above example, the substitution of &Y results in the character string
&CONCAT AABBCC. The scan continues with the concatenation, the result,
AABBCC.

Substituting Literal Values: You might want an ampersand to appear in a token.
You can use the &LITERAL built-in function to suppress the substitution of
variable symbols in a token.

Lines

&9 = HELLO
&A = &LITERAL &9
&TYPE &A

After Substitution

&9 = HELLO
&A = &LITERAL &9
&TYPE &9

Because the value of &A was defined as a literal &9, no substitution is performed.

Lines

&TYPE = QUERY
&TYPE BLIP

After Substitution

&TYPE = QUERY
QUERY BLIp·

In the above example, even though &TYPE is an EXEC keyword, it is assigned the
value of QUERY, and substitution is performed when it appears on an input line.
In this example, when it is substituted with its value, the result is a command line
which is passed to CMS for processing.

Lines

&CONTROL = FIRST
&LITERAL &CONTROL ALL

After Substitution

&CONTROL = FIRST
&CONTROL ALL

In this example, &CONTROL is assigned a value as a variable symbol, but when it
is preceded by the built-in function &LITERAL, the substitution is not performed,
so EXEC processes it as a control statement.

Hexadecimal and Decimal Conversions: You can perform hexadecimal to decimal and
decimal to hexadecimal conversions in an EXEC if you use the control statement
&HEXON.

Tokens of the form X'xxx, can be converted from hexadecimal to decimal and from
decimal to hexidecimal. The conversion takes place according to the rules given
below. These rules are in effect only if '&HEX ON' is in effect.

1. Hexadecimal-to-decimal conversion is performed in the assignment statement,
and that is the only. place where it occurs.

Example:

&X = 100 + X' 100

This results in &X being set to 356 (100 + 256)

Appendix B. The CMS EXEC Processor B-21

EXEC Control Statements

&CONTROL ALL
-E1 &HEX ON

&NUM = X'FFFFFF

2. Decimal-to-hexadecimal conversion is performed whenever substitution is
performed, except on the right-hand-side of an assignment.

Example:

&STACK LIFO 100 X'100 X'15
&READ VARS &A &B &C

This sets &A to 100, &B to 64, and &C to F.

3. No conversion is performed on the left-hand-side of an assignment statement.
Instead, the quote is treated as an illegal character in a variable name.

4. Conversion errors occur if the conversion cannot be performed, either because
the result is too large, or because the number contains invalid digits.

Example:

&X FFFFFFF
&Y = X' &X

The result of the conversion of X'FFFFFFF' to decimal is larger than the
maximum of 99999999 decimal.

Note: No intermediate truncation occurs during conversion, as in the
preceding example, where X'FFFFFFF contains 9 characters.

Example:

&TYPE X'FFFF

The conversion argument is expected to be a decimal number.

The following illustrates conversions with '&HEX ON' in effect:

Result Mter Substitution

&TYPE HEX X'&NUM = DEC &NUM
&NUM = 16777215
&TYPE HEX FFFFFF

-E2 &IF x'16777215 = X'&NUM &GOTO -E3

&TYPE &LITERAL X'16777215
NE &LITERAL X'&NUM

&TYPE X'16777215 NE X'&NUM
-E3 &NUM = X'10

&Y = &NUM + X'B
&TYPE &Y X'&Y

-E4 &Y = X'&NUM
&Z = &CONCAT &LITERAL X'1 X'&NUM
&HEX OFF
&TYPE &Y &Z
&HEX ON
&TYPE &Y &Z

= DEC 16777215
&IF 28F5C = FFFFFF

&GOTO -E3
&TYPE X'167772 NE X'&NUM

&TYPE 28F5C NE FFFFFF
&NUM = 16
&Y = 16 + 11
&TYPE 27 1B
&Y = 22
&Z = &CONCAT X'1 22
&HEX OFF
&TYPE 22 X'122
&HEX ON
&TYPE 22 7A

To suppress hexadecimal conversion during an EXEC procedure after having used
it, you can use the CMS EXEC control statement:

&HEX OFF

B-22 VM/SP CMS User's Guide

Arguments

so you can use tokens containing the characters X' without the EXEC processor·
converting them to hexadecimal.

An argument in an CMS EXEC procedure is one of the special variable symbols
&1 through &30 that are assigned values when the EXEC is invoked. For example,
if the EXEC named LINKS is invoked with the line:

links viola ariel oberon

the tokens VIOLA, ARIEL, and OBERON are arguments and are assigned to the
variable symbols &1, &2, and &3, respectively.

You can pass as many as 30 arguments to an EXEC procedure; thus the variable
symbols you can set range from &1 to &30. These variables are collectively
referred to as the special variable &no Once these symbols are defined, they can be
used and manipulated in the same manner as any other variable in an EXEC. They
can be tested, displayed, changed, and, if they contain numeric quantities, used
arithmetically.

&IF &2 EQ PRINT &GOTO -PR
&TYPE &1 IS AN INVALID ARGUMENT
&1 = 2
&CT = &1 + 100

The above examples illustrate some explicit methods of manipulating the &n
variables. They can also be implicitly defined or redefined by two EXEC control
statements: &ARGS and &READ ARGS.

An &ARGS control statement redefines all of the special &n variables. The
statement:

&ARGS ABC

assigns the value of A, B, and C to the variables &1, &2, and &3 and sets the
remaining variables, &4 through &30, to blanks.

You can also redefine arguments interactively by using the &READ ARGS control
statement. When EXEC processes this statement, a read request is presented to
your terminal, and the tokens you enter are assigned to the &n variables. For
example, the lines:

&TYPE ENTER FILE NAME AND TYPE:
&READ ARGS
STATE &1 &2 *

request you to enter two tokens, and then treat these tokens as the arguments &1
and &2. The remaining variables &3 through &30 are set to blanks.

If you want to redefine specific &n variables, and leave the values of others intact,
you can either redefine the individual variables in separate assignment statements,
or use the variable symbol in the &ARGS or &READ ARGS statement. For
example, the statement:

&ARGS CONT &2 &3 RETURN &5 &6 &7 &8 &9 &10

assigns new values to the variables &1 and &4, but does not change the existing
values for the remaining symbols through &10.

Appendix B. The CMS EXEC Processor B .. 23

If you need to set an argument or &n special variable to blanks, either on an EXEC
command line. or in an &ARGS or &READ ARGS control statement, you can use a
percent sign (%) in its place. For example, the lines:

&ARGS SET QUERY % TYPE
&TYPE &1 &2 &3 &4

result in the display:

SET QUERY TYPE

The symbol &3 has a value of blanks, and as a null token, is discarded from the
line.

Using the &INDEX Special Variable

B-24 VM/SP eMS User's Guide

The EXEC special variable, &INDEX, initially contains a numeric value
corresponding to the number of arguments defined when the EXEC was invoked.
The value of &INDEX is reset whenever an &ARGS or &READ ARGS control
statement is executed.

&INDEX can be useful in many circumstances. If you create an EXEC that may
expect any number of arguments, and you are going to perform the same operation
for each, you might set a counter and use the value of &INDEX to test it. For
example, an EXEC named PRINTX accepts arguments that are the filenames of
ASSEMBLE files:

&CT = 1
&LOOP 2 &CT > &INDEX
PRINT &&CT ASSEMBLE
&CT = &CT + 1

In the preceding example, the token &&CT is substituted with &1, &2, and so on
until all of the arguments entered on the PRINTX line are used.

You can also use &INDEX to test the number of arguments entered. If you design
an EXEC to expect at least two arguments, the procedure might contain the
statements:

&IF &INDEX LT 2 &GOTO -ERR1

-ERR1 &TYPE INVALID COMMAND LINE
&EXIT 1

In this example, if the EXEC is invoked with one or no arguments, an error
message is displayed and the EXEC terminates processing with a return code of 1.

As another example, suppose you wanted to supply an EXEC with default
arguments, which might or might not be overridden. If the EXEC is invoked with
no arguments, the default values are in effect; if it is invoked with arguments, the
arguments replace the default values:

&DISP = PRINT
&COUNT = 2
&IF &INDEX GT 2 &EXIT 1
&IF &INDEX EQ 0 &GOTO -GO
&COUNT = &1
&IF &INDEX = 2 &DISP = &2
-GO

Checking Arguments

&* and &$

Default values are supplied for the variables &DISP and &COUNT. Then,
&INDEX is tested, and the variables are reset if any arguments were entered.

There are a number of tests that you can perform on arguments passed to a CMS
EXEC. In some cases, you may want to test for the length of a specific argument
or to test whether an argument is character data or numeric data. To perform these
tests, you can use the EXEC built-in functions &LENGTH and &DAT ATYPE.

To use either &LENGTH or &DATATYPE, you must first assign a variable to
receive the result of the function, and then test the variable. For example, to test
whether an entered argument is five characters long, you could use the statements:

&LIMIT = &LENGTH &1
&IF &LIMIT GT 5 &EXIT &LIMIT

When these statements are executed, if the first argument (&1) is greater than five
characters, the exit is taken, and the return code indicates the length of &1.

If you wish to check whether a number was entered for an argument, use the
&DATATYPE function:

&STRING = &DATATYPE &2
&IF &STRING ,= NUM &GOTO -ERR4

In this example, the second argument expected by the EXEC must be a numeric
quantity. If it is not, a branch is taken to an error exit routine.

Often, you may create an EXEC that tests for specific arguments and then takes
various paths, depending on the argument. For example:

&IF &2
&IF &2
&IF &2
&EXIT

PRINT &GOTO -PR
TYPE &GOTO -TY
ERASE &GOTO -ER

In this EXEC, if the value of &2 is not PRINT, TYPE, or ERASE, or was not
entered, the EXEC terminates processing.

There are two special EXEC keywords that you may use to test arguments passed
in an EXEC. They are &* and &$, which can be used only in an &IF or an &LOOP
control statement. They test the entire range of numeric variables &1 through &30,
as follows:

&$: The special token &$ is interpreted as "any of the variables &1, &2, ... ,
&30. "That is, if the value of anyone of the numeric variables satisfies the
established condition, then the &IF statement is considered to be true. The
statement is false only when none of the variables fulfills the specified
requirements.

As an example, suppose you want to make sure that some particular value is passed
to the EXEC. You can check to see if any of the arguments satisfy this condition,
as follows:

&IF &$ EQ PRINT &SKIP 2
&TYPE PARM LIST MUST INCLUDE PRINT
&EXIT

Appendix B. The CMS EXEC Processor B-25

In this example, the path to the &TYPE statement is taken only when none of the
arguments passed to the EXEC procedure equal the character string PRINT.

&*: The special token&* is interpreted as "all of the variables &1, &2, ... ,
&30."That is, if the value of each of the numeric variables satisfies the established
condition, then the &IF statement is considered to be true. The statement is false
when at least one of the variables fails to meet the specified requirements.

Use &* to test for the absence of an argument as follows:

&IF &* NE ASSEMBLE &EXIT 3

In this example, if an EXEC is invoked, and none of the arguments equals
ASSEMBLE, the EXEC terminates with a return code of 3.

The tokens &* and &$ are set by arguments entered when an EXEC is invoked and
reset when you issue an &ARGS or &READ ARGS control statement. If either &*
or &$ is null because no arguments are entered, the &IF statement is considered a
null statement, and no error occurs.

Execution Paths in a eMS EXEC

You have already seen examples of the &IF, &GOTO, &SKlP, and &LOOP control
statements. A more detailed discussion on each of these statements and additional
techniques for controlling execution paths in an EXEC procedure follow.

Labels in a CMS EXEC Procedure

B-26 VM/SP eMS User's Guide

In many instances, an execution control statement in an EXEC procedure causes a
branch to a particular statement that is identified by a label. The rules and
conventions for creating syntactically correct EXEC labels are:

• A label must begin with a hyphen (dash) and must have at least one additional
character following the hyphen.

• Up to seven additional alphameric characters may follow the hyphen (with no
intervening blanks). However, the sequence:

&GOTO -PROBABLY

-PROBABLY

executes successfully, because when each statement is scanned, the token
-PROBABLY is truncated to the same eight-character token, -PROBABL.

• A label name may be the object of an &GOTO or &LOOP control statement.

• A label that is branched to must be the first token on a line. It may stand by
itself, with no other tokens on the line, or it may precede an executable CMS
command or CMS EXEC control statement. The following are examples of
the correct use of labels:

&GOTO -LAB1
-LAB 1
-LAB2 &CONTINUE
-CHECK &IF &INDEX EQ 0 &GOTO -EXIT
&IF &INDEX LT 5 &SKIP
-EXIT &EXIT 4
&TYPE &LITERAL &INDEX VALUE IS &INDEX

Conditional Execution with the &IF Statement

Symbol Mnemonic

= EQ

-.= NE

The main tool available to you for controlling conditional execution in a CMS
EXEC procedure is the &IF control statement. The &IF control statement provides
the decision-making ability that you need to set up conditional branches in your
EXEC procedure.

One approach to decision-making with the &IF control statement is to compare two
tokens, and perform some action based on the result of the comparison. When the
comparison is specified true, the executable statement is executed. When the
comparison is false, control passes to the next sequential statement in the EXEC
procedure. An example of a simple &IF statement is:

&IF &1 EQ &2 &TYPE MATCH FOUND

If the comparand values are not equal, the statement &TYPE MATCH FOUND is
not executed, and control passes to the next statement in the EXEC procedure. If
the comparand values are equal, the statement &TYPE MATCH FOUND is
executed before control passes to the next statement. &IF statements can also be
used to establish a comparison between a variable and a constant. For example, if
a t~rminal user could properly enter a YES or NO response to a prompting
message, you could set up &IF statements to check the response as follows:

&READ ARGS
&IF &1 EQ YES &GOTO -YESANS
&IF &1 EQ NO &GOTO -NOANS
&TYPE &1 IS NOT A VALID RESP~NSE (MUST BE YES OR NO)
&EXIT
-YESANS

-NOANS

In this example, the branch to -YESANS is taken if the entered argument is YES;
otherwise, control passes to the next &IF statement. The branch to -NOANS is
taken if the argument is NO; otherwise, control passes to the &TYPE statement,
which displays the entered argument in an error message and exits.

The test performed in an &IF statement need not be a simple test of equality
between two tokens; other types of comparisons can be tested. The tests that can
be performed and the symbols you can use to represent them are:

Meaning

A equals B

A does not equal B

Appendix B. The CMS EXEC Processor B..,27

Symbol Mnemonic

< LT

<= LE

> GT

>= GE

Compound &IF Statements

Meaning

A is less than B

A is less than or equal to B (not greater than)

A is greater than B

A is greater than or equal to B (not less than)

You can place multiple &IF control statements on one line, to test a variable for
more than one condition. For example, the statement:

&IF &NUM GT 5 &IF &NUM LT 10 &TYPE O.K.

checks the variable symbol &NUM for a value greater than 5 and less than 10. H
both of these conditions are satisfied, the &IF statement is true, and the &TYPE
statement is executed. H either condition is false, then the &TYPE statement is not
executed.

The number of &IF statements that may be nested is limited only by the following
criteria:

CMS EXEC files

EXEC 2 files

a maximum of 32 tokens for variable-length files.
72 characters for fixed-length records.

the record length of the file.

Branching with the &GOTO Statement

B-28 VM/SP eMS User's Guide

The &GOTO control statement allows you to transfer control within your EXEC
procedure:

• To a specified EXEC label somewhere in the EXEC file:

&GOTO -TEST

where -TEST is the label to which control is passed.

• To a particular line within the EXEC file. For example:

&GOTO 15

results in control being passed to statement 15 in the EXEC file.

• Directly to the top of the EXEC file. For example:

&GOTO TOP

passes control to the beginning of the EXEC procedure.

The &GOTO control statement can be coded wherever an executable statement is
permitted in an EXEC procedure. One of its common uses is in conjunction with
the &IF control statement. For example, in the statement:

&IF &INDEX EQ 0 &GOTO -ERROR

the branch to the statement labeled -ERROR is taken when the value of the
&INDEX special variable is zero. Otherwise, control passes to the next sequential
statement in the EXEC procedure.

An &GOTO statement can also stand alone as an EXEC control statement. When
coded as such, it forces an unconditional branch to the specified location. For
example, you might create an EXEC that has several execution paths, each of
which terminates with an &GOTO statement leading to a common exit routine:

-PATH 1 &CONTINUE

&GOTO -EXIT
-PATH2 &CONTINUE

&GOTO -EXIT
&PATH3 &CONTINUE

-EXIT &CONTINUE

You can use the &GOTO control statement to establish a loop. For example:

&GLOBAL1 = &GLOBAL1 + 1
&TYPE ENTER NUMBER:
&READ VARS &NEXT
&IF .&NEXT = • &GOTO -FINIS
&IF &GLOBAL1 = 2 &TOTAL = 0
&TOTAL = &TOTAL + &NEXT
&GOTO TOP
-FINIS
&TYPE TOTAL IS &TOTAL

In this EXEC example, the value of &GLOBALI is one initially and &TOTAL is
set to zero the first time through the loop. All of the statements, through the
&GOTO TOP statement, are executed repeatedly until a null line is entered in
response to the prompting message. Then, the branch is taken to the label -FINIS
and the total is typed.

Using the &GOTO Control Statement: When an EXEC procedure processes an
&GOTO statement, and searches for a given label or line number, the scan begins
on the line following the &GOTO statement, proceeds to the bottom of the file,
then wraps around to the top of the file and continues to the line immediately
preceding the &GOTO statement. If there are duplicate labels in an EXEC file, the
first label encountered during the search is the one that is branched to.

If the label or line number is not found during the scan, EXEC terminates
processing and displays the message:

ERROR IN EXEC FILE filename, LINE n - &SKIP or &GOTO ERROR

If the label or line number is found, control is passed to that location and execution
continues.

Appendix B. The CMS EXEC Processor B-29

Branching with the &SKIP Statement

Using Counters for Loop Control

B-30 VM/SP eMS User's Guide

The &SKIP control statement provides you with a second method of passing
control to various points in an EXEC procedure. Instead of branching to a named
or numbered location in an EXEC procedure, &SKIP passes control a specified
number of lines forward or backward in the file.

You pass control forward in an EXEC by specifying how many lines to skip. For
example, to handle a conditional exit from an EXEC procedure, you could code the
following:

&IF &RETCODE EQ 0 &SKIP
&EXIT &RETCODE

where the &EXIT statement is skipped whenever the value of &RETCODE equals
zero. If the value of &RETCODE does not equal zero, control passes out of the
current EXEC procedure with a return code that is the nonzero value in
&RETCODE. Note that when no &SKIP operand is specified, a value of 1 is
assumed.

A succession of &SKIP statements can be used to perform multiple tests on a
variable. For example, suppose an argument should contain a value from 5 to 10
inclusive:

&IF &1 LT 5 &SKIP
&IF &1 LE 10 &SKIP
&TYPE &1 IS NOT WITHIN RANGE 5-10

If the value of &1 is less than 5, control passes to the &TYPE control statement,
which displays the erroneous value and an explanatory message. If the value of &1
is greater than or equal to 5, the next statement checks to see if it is less than or
equal to 10. If this is true, then the value is between 5 and 10 inclusive, and
execution continues following the &TYPE statement.

When you want to pass control to a statement that precedes the current line,
determine how many lines backward you want to go, and code &SKIP with the
desired negative value:

&VAL = 1
&TYPE &VAL
&VAL = &VAL + 1
&IF &VAL NE 10 &SKIP -2

In this EXEC, the &TYPE statement is executed repeatedly until the value of
&V AL is 10, and then execution continues with the statement following the &IF
statement.

A primary consideration in designing a portion of an EXEC procedure that is to be
executed many times is how to control the number of executions. One way to
control the execution of a sequence of instructions is to create a loop that tests and
changes the value of a counter.

Before entering the loop, the counter is initialized to a value. Each time through
the loop, the counter is adjusted (increased or decreased) toward a limit value.
When the limit value is reached (the counter value is the same as the limit value),
control passes out of the loop and it is not executed again. For example, the
following EXEC initializes a counter based on the argument &1:

&IF &INDEX EQ 0 &EXIT 12
&TYPE COUNT IS &1
&1 = &1 - 1
&IF &1 GT 0 &SKIP -2

When this EXEC procedure is invoked, it checks that at least one argument was
passed to it. If an argument is passed, it is assumed to be a number that indicates
how many times the loop is to execute. Each time it passes through the loop, the
value of &1 is decreased by 1. When the value of &1 reaches zero, control passes
from the loop to the next sequential statement.

There are several ways of setting, adjusting, and testing counters. Some ways to
set counters are by:

Reading arguments from a terminal, such as:

&READ VARS &COUNT1 &COUNT2

• Assigning an arbitrary value, such as:

&COUNTER = 43

• Assigning a variable value or expression, such as:

&COUNTS = &INDEX - 1

Counter values can be increased or decreased by any increment or decrement
that meets your purposes. For example:

&COUNTEM = &COUNTEM - &RETCODE
&COUNT1 = &COUNT + 100

Loop Control with the &LOOP Statement

A convenient way to control execution of a sequence of EXEC statements is with
the &LOOP control statement. An &LOOP statement can be set up in four ways:

• To execute a particular number of statements a specified number of times. For
example, the statement:

&LOOP 3 2

indicates that the three statements following the &LOOP statement are to be
executed twice.

• To execute a particular number of statements until a specified condition is
satisfied. For example:

&LOOP 4 &X = 0

The four statements following this statement are executed until the value of &X
is O.

• To execute the statements down to (and including) the statement identified by
a label for a specified number of times. For example:

&LOOP -ENDLOOP 6

The statements between this &LOOP statement and the label -ENDLOOP are
executed six times.

Appendix B. The CMS EXEC Processor B-31

8-32 VM/SP eMS User's Guide

To execute the statements down to (and including) the statement identified by
a label until a specified condition is satisfied. In the following example:

&LOOP -ENDLOOP &X = 0

the statements are executed repeatedly until the value of &X is O.

The numbers specified for the number of lines to execute and the number of times
through the loop must be positive integers. You can use a variable symbol to
represent the integer. If a label is used to define the limit of the loop, it must
follow the &LOOP statement (it cannot precede the &LOOP statement).

In a conditional &LOOP statement, any variable symbols in the conditional phrase
are substituted each time the loop is executed. For example, the statements:

&X = 0
&LOOP -END &X EQ 2
&X = &X + 1
-END &TYPE &X

are interpreted and executed as follows:

1. The variable &X is assigned a value of O.

2. The &LOOP statement is interpreted as a conditional form; that is, to loop to
-END until the value of &X equals 2. Since the value of &X is not 2, the loop
is entered.

3. The variable &X is increased by 1 and is then displayed.

4. Control returns to the beginning of the loop, where &X is tested to see if it
equals 2. Since it does not, the loop is executed again and 2 is displayed. The
next time through the loop, when &X equals 2, control is passed to the EXEC
statement immediately following the label-END.

When this EXEC procedure is executed, the following lines are displayed:

1
2

at which time the value of &X equals 2; the loop is not executed again.

Another example of a conditional loop is:

&Y = &LITERAL A&B
&LOOP 2 .&X EQ &LITERAL .&
&X = &SUBSTR &Y 2 1
&TYPE &X

These statements are interpreted and executed as follows:

1. The variable &Y is set to the literal value A&B.

2. The two statements following the &LOOP statement are to be executed until
the value of &X is &.

3. The &SUBSTR built-in function is used to set the variable &X to the value of
the second character in the variable &Y, which is a literal ampersand (&).

Nesting CMS EXEC Procedures

4. The ampersand is typed once, and the loop does not execute again because the
condition that the value of &X be a literal ampersand is met.

If you want to use a CMS EXEC procedure within another CMS EXEC, you must
use the EXEC command to execute it. For example, if you have the statement:

EXEC TEST

in an EXEC procedure, it invokes the EXEC procedure TEST. The procedure
TEST EXEC executes i.ndependently of the other EXEC; the variables &1, &2 and
so on are assigned values and the default settings for control statements such as
&CONTROL and &HEX are reset. When TEST EXEC completes execution,
control returns to the next line in the calling EXEC, where the values for variable
symbols and EXEC settings are the same as when the TEST EXEC was invoked.

Passing Arguments to Nested Procedures: Variables in an EXEC file have meaning
only within the particular procedure in which they are defined. There are two
methods you can use to pass variable information to nested EXECs. One way is to
pass arguments on the EXEC command line. For example, if the CHECK EXEC
contains the line:

EXEC COUNTEM &ITEMCT &NUM

then the current values of &ITEMCT and &NUM are assigned to the variable
symbols &1 and &2 in COUNTEM EXEC. (The values of &1 and &2 in CHECK
EXEC do not change.)

You can also use the ten special variables &GLOBALO through &GLOBAL9.
These variables can only contain integral numeric values; you cannot assign them
character-string values. These variables can be used to set up arguments to pass to
nested procedures, or to communicate between EXEC files at different recursion
levels.

Thus, if CHECK EXEC contains:

&GLOBAL1 = 100
EXEC COUNTEM

The variable &GLOBALI has a value of 100 in COUNTEM EXEC, which may
also test and modify it.

Horizontal communication by means of global variables is also possible at recursion
levels 2 and above. For example: EXEC A calls EXEC B, which sets
&GLOBALI to 2 and exits, then EXEC A (STILL ACTIVE) calls EXEC C,
which finds that &GLOBALI has a value of 2, as set by EXEC B.

The CMS EXEC interpreter can handle up to 19 levels of recursion at one time,
that is, up to 19 EXECs may be active, one nested within another. An EXEC may
also call itself.

You can test the &GLOBAL special variable to see if an EXEC is executing within
another procedure and if so, at what level of recursion it is executing. For example,
if the file RECOMP EXEC contained the lines:

Appendix B. The CMS EXEC Processor B-33

&IF &GLOBAL EQ 2 &GOTO -2NDPASS

EXEC RECOMP

-2NDPASS &TYPE SECOND PASS BEGINS

then when the line "EXEC RECOMP" is executed, control passes to the beginning
of the EXEC; the value of &GLOBAL changes from 1 to 2; and control is passed
to the &TYPE statement at the label 2NDP ASS.

Exiting From CMS EXEC Procedures

8-34 VM/SP eMS User's Guide

Execution in a CMS EXEC procedure proceeds sequentially through a file, line by
line. When a statement causes control to be passed to another statement,
execution continues at the second statement, and again proceeds sequentially
through the file. When the end of the file is reached, the EXEC terminates
processing. Frequently, however, you may not want processing to continue to the
end of the file. . You can use the &EXIT statement to cause an immediate exit from
EXEC processing and a return to the CMS environment. If the EXEC has been
invoked from another EXEC, control is returned to the calling EXEC file .. For
example, the statement:

&IF &RETCODE ,= 0 &EXIT

would cause an immediate exit from the EXEC if the return code from the last
issued CMS command was not zero.

You can use the &EXIT statement to terminate each of a series of execution paths
in an EXEC. For example, using the following statements,

&IF &1 EQ PRINT &GOTO -PRINT
&IF &1 EQ TYPE &GOTO -TYPE

-PRINT

&EXIT
-TYPE

&EXIT

you ensure that once the path through the -PRINT routine has been taken, the
EXEC does not continue processing with the -TYPE routine.

Passing Return Codes From EXECs: The &EXIT control statement also provides a
special function that allows you to pass a return code to CMS or to the program or
EXEC that called this EXEC. You specify the return code value on the &EXIT
control statement as follows:

&EXIT 4

Execution of this line results in a return to CMS with a ready message:

Terminal Communications

R(00004) ;

If you have a variety of exits in an EXEC, you can use a different value following
each &EXIT statement, to indicate which path had been taken in the EXEC.

You can also use a variable symbol as the value to be passed as the return code:

&EXIT &VAL

Another common use of the &EXIT statement is to cause an exit to be taken
following an error in a CMS command, and using the return code from the CMS
command in the &EXIT statement:

&IF &RETCODE NE 0 &EXIT &RETCODE

You can design EXECs to be used interactively, so that their execution depends on
information entered directly from the terminal during the execution. With the
&TYPE statement, you can display a line at the terminal, and with the &READ
statement, you can read one or more lines from the terminal or console stack.
Used together, these statements can provide a prompting function in an EXEC:

&TYPE WHAT DO YOU WANT TO DO NOW?
&TYPE ENTER (STOP CONTINUE REPEAT):
&READ VARS &LABEL
&GOTO -&LABEL
-STOP

-CONTINUE

-REPEAT

In this example, the &READ control statement is used with the V ARS operand,
which accepts the words entered at the terminal as values to be assigned to variable
symbols. If the word STOP is entered in response to the &READ V ARS statement
in this example, the variable symbol &LABEL is assigned the value STOP. Then,
in the &GOTO statement, the symbol is substituted with the value STOP, so the
branch is taken to the label-STOP.

You can specify up to 17 variable names on an &READ V ARS control statement.
If you enter fewer words than are expected, the remaining variables are set to
blanks. If you enter a null line, any variable symbols on the &READ line are set to
blanks. If the execution of your EXEC depends on a value entered as a result of
an &READ V ARS, you might want to include a test for a null line immediately
following the statement; for example:

&READ VARS &TITLE &SUBJ
&IF .&TITLE = . &EXIT 100

If no tokens are entered in response to the terminal read request, the variable
&TITLE is null, and the EXEC terminates with a return code of 100.

Appendix B. The CMS EXEC Processor B-35

If you are writing an EXEC that may receive a number of tokens from the
terminal, you may find it more convenient to use the &READ ARGS form of the
&READ control statement. When the &READ ARGS statement reads a line from
the terminal, the tokens entered are assigned to the &n special variables (&1, &2,
and so on).

Reading CMS Commands and eMS EXEC Control Statements from the Terminal

When you use the &READ control statement with no operands, or with a numeric
value, EXEC reads one line or the specified number of lines from the terminal.
These lines are treated, by EXEC, as if they were in the EXEC file all along. For
example, if you have an EXEC named COMMAND that looks like the following:

&TYPE ENTER NEXT COMMAND:
&READ 1
&SKIP -2

all the commands you enter during the terminal session are processed by the
EXEC. Each time the &READ statement is executed, you enter a CMS command.
When the command finishes, control returns to EXEC, which prompts you to enter
the next command. Since the CMS commands are all being executed from within
the EXEC, you do not receive the CMS ready message at the completion of each
command.

You could also enter EXEC control statements or assignment statements. To
terminate the EXEC and return to the CMS environment, you must enter the
EXEC control statement &EXIT from the terminal:

&exit

Displaying Data at a Terminal

You can use the &TYPE and &BEGTYPE control statements to display lines from
your EXEC at the terminal. In addition, you can use the CMS TYPE command to
display the contents of CMS files. When you use the &TYPE control statement,
you can display variable symbols as well as data. Variable symbols on an &TYPE
control statement are substituted before they are displayed. For example, the lines:

&NAME = ARCHER
&TYPE &NAME

result in the display:

ARCHER

You can use the &TYPE statement to display prompting messages, error or
information messages, or lines of data.

In an EXEC file with fixed-length records, only the first 72 characters of each line
are processed by the EXEC interpreter. Therefore, if you want to use the &TYPE
control statement to display a line longer than 72 characters, you must convert the
file into variable-length records.

&BEGTYPE and &BEGTYPE ALL

B-36 VM/SP eMS User's Guide

All of the words in an &TYPE control statement are scanned into 8-character
tokens. If you need to display a word that has more than 8 characters, you

.Using the CMS TYPE Command

must use the &BEGTYPE control statement. The &BEGTYPE control statement
precedes one or more data lines that you want to display; for example:

&BEGTYPE
THIS EXEC PERFORMS THE FOLLOWING FUNCTIONS:
1. IT ACCESSES DISKS 193, 194, and 195 AS

B, C, AND D EXTENSIONS OF THE A-DISK.
2. IT DEFINES, FORMATS, AND ACCESSES A

TEMPORARY 195 DISK (E).
&END

The &END statement must be used to terminate a series of lines introduced with
the &BEGTYPE statement. "&END" must begin in column 1 of the EXEC file.

The lines following an &BEGTYPE statement, up to the &END statement, are not
scanned by the EXEC interpreter. Therefore, no substitution is performed on the
variable symbols on these data lines. If you need to display a symbol, you must use
the &TYPE control statement. To display a combination of scanned and
unscanned lines, you might need to use both the &TYPE and &BEGTYPE control
statements:

&BEGTYPE
EVALUATION BEGINS ...
&END
&TYPE &VAL1 IS &NUM1.
&TYPE &VAL2 IS &NUM2.
&BEGTYPE
EVALUATION COMPLETE.
&END

If you use the &BEGTYPE control statement in an EXEC file with fixed-length
records, and you want to display lines longer than 72 characters, you must use the
ALL operand. For example:

&BEGTYPE ALL
.. &perioddata line of 103 characters
.. &perioddata line of 98 characters
.. &perioddata line of 50 characters

&END

You can display lines of up to 130 characters in this way. When you enter lines
that are longer than the record length in an EXEC file, the records are truncated by
the editor. You must increase the record length of the file by using the LRECL
option of the EDIT command, for example:

edit old exec a (lrecl 130

You can use the TYPE command in an EXEC file to display data files, or portions
of data files. For example, you might have a number of files with the same
filetype; the files contain various kinds of data. You could create an EXEC that
invokes the TYPE command to display a particular file as follows:

&IF &INDEX EQ 2 &IF &2 EQ ? &GOTO -TYPE

-TYPE
ACCESS 198 B
TYPE & 1 MEMO B

Appendix B. The CMS EXEC Processor B-37

Controlling Terminal Displays

B-38 VM/SP eMS User's Guide

The filetype MEMO is a reserved filetype, which accepts data in uppercase and
lowercase; you can use it for documentation files or programming notes.

The two CMS Immediate commands that control terminal display are HT (halt
typing) and RT (resume typing). When data is being displayed at your terminal,
you can suppress the display by signaling an attention interruption and entering:

ht

This command affects output that is being displayed:

• As a response to a CMS command, including prompting messages, error
messages, or normal display responses (as from the TYPE command)

• From a program

• In response to an &TYPE or &BEGTYPE request in an EXEC

Once display has been suppressed, and before the command, program, or EXEC
completes execution, you can request that display be resumed by signaling another
interruption and entering:

rt

In an EXEC file, if you want to halt or resume display, you must use the &STACK
control statement to enter the RT or HT commands or use the eMS commands
SET CMSTYPE RT and SET CMSTYPE HT. For example, the ACCESS
command issues a message when a disk is accessed:

D (198) RIO

If you are going to issue the ACCESS command within a CMS EXEC and you do
not wish this message displayed, you could enter the lines:

SET CMSTYPE HT
ACCESS 198 D

or
&STACK HT
ACCESS 198 D

When you halt CMS terminal display with an HT command, all displaying, except
for CMS Error messages with a suffix letter of S or T, is suppressed for the
remainder of the EXEC file's execution. To reverse the suppressed display, use the
RTimmediate command or the SET CMSTYPE RT. To execute the RT
Immediate command in an EXEC, use either of the statements:

&STACK RT
or --

SET CMSTYPE RT

The &TYPEFLAG Special Variable: You can test the current value of the display
controlling an EXEC with the &TYPEFLAG special variable. The value of
&TYPEFLAG can only be one of the literal values HT or RT. For example:

&IF &$ EQ NOTYPE &STACK HT

&IF &TYPEFLAG EQ HT &SKIP 3
&TYPE LINE1
&TYPE LINE2
&TYPE LINE3
&CONTINUE

In this example, if NOTYPE is entered as an argument when the EXEC is invoked,
the CMS command SET CMSTYPE HT is executed, hence no display appears at
the terminal. Within the EXEC, the variable &TYPEFLAG is tested, and, if it is
HT, then a series of &TYPE statements is skipped. Since EXEC does not have to
process these lines, you can save time and system resources by not processing
them.

Reading from the Console Stack

When you are in the CMS environment executing programs or CMS commands,
you can stack commands, either by entering multiple command lines separated by
the logical line end symbol, as follows:

print myfile listing#cp query printer

or by signaling an attention interruption and entering a command line, as follows:

print myfile listing
!
cp query printer

In both of the preceding examples, the second command line is saved in the console
stack. Whenever a read occurs in your virtual machine, CMS reads lines from the
console stack, if there are any lines in/it. If there are no lines in the stack, the read
results in a physical read to your terminal (on a typewriter terminal, the keyboard
unlocks).

A virtual machine read occurs whenever a command or subcommand finishes
execution, or when an EXEC or a program issues a read request. Many CMS
commands also issue read requests, for example, SORT and COPYFILE. If you
want to execute one of these commands in an EXEC, you may want to stack, in
the console stack, the response to the read request so that when it is issued it is
immediately satisfied. For example:

&STACK 42-121 1
COPYFILE &NAME LISTING A = ASSEMBLE = (SPECS

When the COPYFILE command is issued with the SPECS option, a prompting
message for a specification list is issued, followed by a read request. In this EXEC,
the request is satisfied with the line stacked with the &STACK control statement.
If ~he response were not stacked, you would have to enter the appropriate
information from the terminal during the execution of the EXEC that contained
this COPYFILE command line.

In addition to stacking predefined responses to commands and programs, you can
use the console stack to stack CMS commands and EDIT subcommands, as well as
data lines to be read within the EXEC.

The number of lines that you can place in the console stack at anyone time varies
according to the amount of storage available in your virtual machine for stacking.

Appendix B. The CMS EXEC Processor B-39

You may want to stack one or two lines at a time, or you may wish to stack many
lines. There are several features available in EXEC that can help you manipulate
the stack.

Exchanging Data Between Programs through the Stack

B-40 VM/SP eMS User's Guide

The console stack is composed of the terminal input buffer and the program stack.
Lines typed at the terminal (maximum length of 130 characters per line) are placed
in the terminal input buffer. Lines transmitted by programs through the CMS
ATTN function are placed in the program stack (maximum length of 255
characters per line).

When the WAITRD function is called (as a result of a RDTERM macro call, for
example), it will look in the most recently created buffer of the program stack (see
BUFFER #2 in Figure B-5). As each buffer is exhausted, RDTERM will look to
the next buffer in the program stack (BUFFER #1). If the program stack is empty,
W AITRD will then look in the terminal input buffer for an input line. If the
terminal input buffer is also empty, then a "console read I/O" will be issued to
acquire data from the terminal.

RDTERM
ATTN ATTN MACRO
FIFO LIFO

I I

L ~
BUFFER #2

BUFFER #1

BUFFER #0

PROGRAM STACK

..-------..\ I \ I \
TERMINAL INPUT BUFFER

Fipre B-5. The Console Stack

However, when a program issues a RDTERM TYPE = DIRECT, a VM READ is
presented at your terminal. The program stack and terminal input buffer are
bypassed and unchanged. When the response is entered, the first "logical line" is
read and transferred to buffer. If multiple "logical lines" are entered, the
remaining lines are added to the terminal input buffer in a FIFO manner.

Previously stacked lines read from the program stack will not have changed since
the time they were stored by ATTN (unless uppercase translation has been
requested). Before lines are extracted from the terminal input buffer, they are
scanned by CP (when typed) for characters defined by the CP TERMINAL

command (or for their default values). WAITRD will then scan them for X'lS'
(logical end of line character), X'OO' (physical end of line character), and for any
other character defined through a CMS 'SET INPUT' command.

The MAKEBUF, DROPBUF, SENTRIES, and DESBUF CMS commands allow
you to create buffers in the program stack, eliminate some or all of the program
stack buffers, determine the number of lines in the program stack, and empty both
the program stack and the terminal input buffer. These commands may also be
called from a terminal (as CMS commands), from EXEC files, or from assembler
language programs. A complete description of these commands can be found in
the publication VM/SP CMS Command and Macro Reference.

Note: Lines read from the terminal or stacked in the terminal input buffer can be
restacked in the program stack, using the A TIN function, and executed at a later
time. The line length specified in the parameter list for the ATTN function should
be the same length as the line that was previously read from the terminal or the
terminal input buffer. A line stacked again by ATTN, using a line length greater
than the line length read from the terminal or the console input buffer, may result
in an error when execution of the stacked line is attempted.

&:BEGSTACK and &BEGSTACK ALL

Stacking FIFO and LIFO

Just as the &TYPE control statement has an &BEGTYPE counterpart, the
&ST ACK control statement has an &BEGST ACK counterpart. You can stack
multiple data lines following an &BEGST ACK statement. Lines stacked in this
way are not scanned by the EXEC processor, and no substitution is performed on
variable symbols. For example, the lines:

&BEGSTACK
.. &periodline of data
.. &periodline of data
.. &periodline of data
&END

stack three data lines in the stack. The stacked lines must be followed by an &END
control statement, which must be entered in the EXEC file beginning in column 1.

If you have an EXEC with fixed-length records, and you want to stack data lines
longer than 72 characters, you must use the ALL operand of the &BEGST ACK
control statement:

&BEGSTACK ALL
.. &periodline of 103 characters
.. &periodline of 98 characters
.. &periodline of 60 characters
&END

The ALL operand is not necessary for variable-length EXEC files.

When you are stacking multiple lines in an EXEC, you may choose to reverse the
sequence in which lines are read in from the stack. The default sequence is FIFO
(first-in, first-out), but you may specify LIFO (last-in, first-out) when you enter
the &ST ACK or &BEGST ACK control statement. For example, execution of the
lines:

Appendix B. The CMS EXEC Processor B-41

&STACK &TYPE A
&STACK &TYPE B
&STACK LIFO &TYPE C
&STACK LIFO &TYPE D
&STACK &TYPE E

results in the display:

D
C
A
B
E

The &READFLAG Special Variable

Stacking CMS Commands

B-42 VM/SP eMS User's Guide

The EXEC special variable &READFLAG always contains one of two values,
STACK or CONSOLE. When it contains the value STACK, it indicates that there
are lines in the stack. When it contains the value CONSOLE, it indicates that the
stack is empty and that the next read request results in a physical read to the
terminal (console).

You can test this value in an EXEC, for example:

&IF &READFLAG EQ STACK &SKIP 2
&TYPE STACK EMPTY
&EXIT
&CONTINUE

You might use a similar test in an EXEC that processes a number of lines from the
stack, and loops through a series of steps until the stack is empty.

Whenever you place a command in the console stack, it remains there until a read
request is presented to the terminal. If the request is the result of an &READ
control statement, then the line is read from the stack. For example, the lines:

&STACK CP QUERY TIME
&READ

result in the command line being stacked, read in, and then executed.

If there are no read requests in an EXEC file, then any commands that are stacked
are executed after the EXEC has finished and has returned control to the CMS
environment. For example, consider the lines:

TYPE &1 LISTING A
ACCESS 198 A
TYPE &1 LISTING A

If this EXEC is located on your 191 A-disk, then when the ACCESS command
accesses a new A -disk, CMS cannot continue reading the EXEC file and issues an
error message. However, if the EXEC was written as follows:

TYPE &1 LISTING A
&STACK ACCESS 198 A
&STACK TYPE &1 LISTING A

then, after the TYPE command, the next command lines are stacked, the EXEC
finishes executing and returns control to eMS, which reads the next command lines
from the console stack.

Stacking EDIT Subcommands

When you stack either CMS commands or data with the &ST ACK control
statement in an EXEC procedure, the EXEC processor treats everything except
the immediate commands, HT and R T, as data. Control characters such as the
character delete and line end character are not recognized and the ref ore not
interpreted as performing any special function. The logical control characters as
defined in the CP TERMINAL command, are not substituted with their special
values, since the EXEC lines are being read from disk and not from a terminal.

If you want to issue the EDIT command from within an EXEC, you might want to
stack EDIT sub commands to be read by the CMS editor. You should stack these
subcommands, either with &ST ACK statements, or with the &BEGST ACK
statement, just before issuing the EDIT command. For example:

&BEGSTACK
CASE M
GET SETUP FILE A 1 20
TOP
LOCATE /XX/
&END
&STACK REPLACE
EDIT &1 DATA (LRECL 120

If this EXEC is named EDEX, and you invoke it with:

edex fr01

the EDIT subcommands are stacked in the order they appear in the EXEC. The
EDIT command is invoked to edit the file FROl DATA, and the EDIT
subcommands are read from the stack and executed. When the stack is empty,
your virtual machine is in the edit environment in inpout mode, and the first line you ,
enter replaces the existing line that contains the character string XX.

Note: All of the EDIT subcommands in the example, except for the REPLACE
subcommand, are stacked within an &BEGST ACK stack, and that the REPLACE
subcommand is stacked with &ST ACK. If you are creating EXEC files with
fixed-length records, you must use &ST ACK to stack the INPUT and REPLACE
subcommands. If you use &BEGST ACK, then the INPUT and REPLACE
subcommands are treated as if they contain text data, and so insert or replace one
line in the file (a line of blanks). This is not true, however, for variable-length
EXEC files.

Similarly, if you want to stack a null line, to change from input mode to edit mode
in an EXEC, you must use the &ST ACK statement with no other data on the line
(in both fixed- and variable-length EXEC files). For example:

&STACK INPUT
&BEGSTACK
.. &perioddata line
.. &perioddata line
.. &perioddata line

&END
&STACK
&STACK FILE
EDIT &1 &2
&EXIT

Appendix B. The CMS EXEC Processor B-43

When this EXEC is invoked with a filename and filetype as arguments, the INPUT
subcommand, data lines, null line, and FILE subcommand are placed in the stack
before the EDIT command is issued. The data lines are placed in the specified file
and the file is written onto disk before the EXEC returns control to CMS.

Stacking Lines for EXEC to Reod

Clearing the Comole Stack

8-44 VM/SP eMS User's Guide

Lines in the console stack can be read by the EXEC interpreter with an &READ
control statement. For example:

-SETUP
&LOOP 3 &NUM = 50
&STACK &NUM &CHAR
&NUM = &NUM + 1
&CHAR = &CONCAT &STRNG &NUM

-READ
&LOOP -FINIS &READFLAG EQ CONSOLE
&READ ARGS

-FINIS

In this EXEC procedure, the statements following the label -SETUP stack a
number of lines. The variables &NUM and &CHAR are substituted before they are
stacked. At the label-READ, the lines are read in from the stack and processed.
The values stacked are read in as the variable symbols &1 and &2. Control passes
out of the loop when the stack is empty.

If you use the console stack in an EXEC procedure, you should be sure that it is
empty before you begin stacking lines in it. Also, you should be sure that it is
empty before exiting from the EXEC (unless you have purposely stacked CMS
commands for execution).

One way to clear a line from the stack without affecting the execution of your
EXEC is to use the &READ V ARS or &READ ARGS control statement. You can
use &READ V ARS without specifying any variable symbols so that the line read is
read in and effectively ignored. For example:

&LOOP 1 &READFLAG EQ CONSOLE
&READ ARGS

If these lines occur at the beginning of an EXEC file, they ensure that any stacked
lines are cleared. If the EXEC is named EXEC! and is invoked with the line:

exec1#type help memo#type print memo

then the lines TYPE HELP MEMO and TYPE PRINT MEMO are cleared from
the stack and are not executed.

You could use the same technique to clear the stack in case of an error encountered
in your EXEC, so that the stack is cleared before returning to CMS. You would
especially want to do this if you stacked data lines or EXEC control statements
that have no meaning to CMS.

Another way to clear the console stack is with the CMS function DESBUF. For
example:

&IF &READFLAG EQ STACK DESBUF

When you use the DESBUF function to clear the console input stack, the output
stack is also cleared. The output stack contains lines that are waiting to be
displayed or typed at the terminal. Frequently, when an EXEC is processing,
output lines are stacked, and are not displayed immediately following the execution
of an &TYPE statement. If you want to display all pending output lines before
clearing the console input stack, you should use the CONW AIT function, as
follows:

CONWAIT
&IF &READFLAG EQ STACK DESBUF

The CONW AIT function causes a suspension of program execution until the
console output stack is empty. If there are no lines waiting to be displayed,
CONW AIT has no effect.

Clearing the stack is important when you write edit macros, since all subcommands
issued in an edit macro must be first stacked. See "Writing Edit Macros" for
additional information on using the console stack.

File Manipulation with CMS EXECs

Stacking EXEC Files

You can, to a limited degree, read and write CMS disk files using EXECs. You can
stack files with a file type of EXEC in the console stack and then read them, one
record at a time, with &READ control statements. All data items are truncated to
eight characters. You can write a file, one record at a time, with the &PUNCH
control statement, and then you can read the spool punch file onto disk. Examples
of these techniques follow.

There are two methods to stack EXEC files in the console stack. One is illustrated
using a CMS EXEC file, as shown in the following PREFIX EXEC:

&LNAME = &CONCAT &1 *
LISTFILE &LNAME SCRIPT * (EXEC
EXEC CMS &STACK
&LOOP -END &READFLAG EQ CONSOLE
&READ VARS &NAME &TYPE &MOD
&SUFFIX = &SUBSTR &NAME 3 6
&NEWNAM = &CONCAT &2 &SUFFIX
RENAME &NAME &TYPE &MOD &NEWNAM &TYPE &MOD
&IF &RETCODE EQ 0 &SKIP
&TYPE FILE &NAME &TYPE NOT RENAMED
-END

This EXEC procedure is invoked with two arguments, each two characters in
length, which indicate old and new prefixes for filenames. The EXEC renames
files with a file type of SCRIPT that have the first prefix, changing only the prefix
in the filename.

The LISTFILE command, invoked with the EXEC option, creates a CMS EXEC
file in the format:

&1 &2 filename SCRIPT mode

Appendix B. The CMS EXEC Processor B-45

Stacking Data Files

B-46 VM/SP eMS User's Guide

When the EXEC is invoked with the line:

EXEC eMS &STACK

the argument &STACK is substituted for the variable symbol &1 in each line in the
CMS EXEC. The execution of the CMS EXEC effectively stacks, in the console
stack, the complete file identifications of the files listed:

&STACK filename SCRIPT mode
&STACK filename SCRIPT mode

These stacked lines are read back into the EXEC, one at a time, and the tokens
"filename," "SCRIPT," and "mode" are substituted for the variable symbols
&NAME, &TYPE, and &MOD.

Using the &SUBSTR and &CONCAT built-in functions, the new name for each file
is constructed, and the RENAME command is issued to rename the files.

For example, if you invoke the EXEC procedure with the line:

prefix ab xy

all SCRIPT files that have filenames beginning with the characters AB are renamed
so that the first two characters of the filename are XY. A sample execution
summary of this EXEC is illustrated under "Debugging EXEC Procedures."

You can create a data file, containing fixed-length records, using a filetype of
EXEC. To stack these data lines in the console stack, you can enter them
following an &BEGST ACK (or &BEGSTACK ALL) control statement. For
example, the file DATA EXEC is as follows:

&BEGSTACK
HARRY 10/12/48
PATTI 1/18/49
DAVID 5/20/70
KATHY 8/6/43
MARVIN 2/28/50

The file BDAY EXEC contains:

&CONTROL ERROR
EXEC DATA
&IF &READFLAG EQ CONSOLE &GOTO -NO
&READ VARS &NAME &DATE
&IF &NAME NE &1 &SKIP -2
-FOUND
&IF .&1 EQ . &EXIT
&TYPE &1 's BIRTHDAY IS &DATE
CONWAIT
DESBUF
&EXIT
-NO &TYPE &1 NOT IN LIST
&EXIT

When the BDA Y EXEC is invoked, it expects an argument that is a first name.
The function of the EXEC is to display the birthday of the specified person. A
sample execution of this EXEC might be:

Writing Data Files

bday kathy
KATHY'S BIRTHDAY IS 8/6/43
R;

BDA Y EXEC first executes the DATA EXEC, which stacks names and dates in
the console stack. Then, BDA Y EXEC reads one line at a time from the stack,
assigning the variable names &NAME and &DATE to the tokens on each line. It
compares &NAME with the argument read as &1. When it finds a match, it
displays the message indicating the date, and clears the console stack after waiting
for terminal output to finish.

Note: The file DATA EXEC begins with an &BEGST ACK control statement, but
contains no &END statement. The stack is terminated by the end of the EXEC
file. "Writing Data Files" describes a technique you might use to add new names
and birth dates to the DATA EXEC file.

You can build a CMS file in your virtual card punch using the &PUN CH and
&BEGPUNCH control statements. Depending on the spooling characteristics of
your virtual punch, the file that you build may be sent to another user's card reader,
or to your own virtual card reader. When you read the file with the CMS
READCARD command, the spool reader file becomes a CMS disk file.

The following example illustrates how you might use your card punch and reader to
update a CMS file by adding records to the end of it. The file being updated is the
DATA EXEC, which is the input file for the BDA Y EXEC, shown in the example
in "Stacking Data Files." You could create a separate CMS EXEC to perform the
update, but this example shows how you might modify the BDA Y EXEC to
perform the addition function (ellipses indicate the body of the EXEC, which is
unchanged) :

&CONTROL ERROR
&IF &1 EQ ADD &GOTO -ADDNAME

&EXIT
-ADDNAME
&TYPE ENTER FIRST NAME AND DATE IN FORM MM/DD/YY
&READ VARS &NAME &DATE
&IF .&NAME = . &SKIP 3
&PUNCH &NAME &DATE
&TYPE ENTER NEXT NAME OR NULL LINE:
&SKIP -4
CP SPOOL PUNCH TO *
CP CLOSE PUNCH
READ CARD NEW NAMES
COPYFILE NEW NAMES A DATA EXEC A (APPEND
&IF &RETCODE = 0 &SKIP 2
&TYPE ERROR CREATING FILE
&EXIT &RETCODE
ERASE NEW NAMES

When BDA Y EXEC is invoked with the keyword ADD, you are prompted to enter
lines to be added to the data file. Each line that you enter is punched to the card
punch. When you enter a null line, indicating that you have finished entering lines,
the CP commands SPOOL and CLOSE direct the spool file to your card reader
and close the punch.

Appendix B. The CMS EXEC Processor B-47

Using Your Virtual Card Punch

The file is read in as the file NEW NAMES, which is appended to the file DATA
EXEC using the COPYFILE command with the APPEND option. The file NEW
NAMES is erased and the EXEC terminates processing.

When you punch lines in your virtual punch, the lines are not released as a CP
spool file until the punch is closed. Since the EXEC processor does not close the
virtual punch when it terminates processing, you must issue the CLOSE command
to release the file. You can do this in the EXEC with the command line:

CP CLOSE PUNCH

or from the CMS environment after the EXEC has finished. If you use the
CLOSE command in the EXEC, you must preface it with CP.

The CMS PUNCH command, which you can use in a CMS EXEC to punch an
entire CMS file, closes the punch after punching a file. Therefore, if you want to
create a punch file using a combination of &PUNCH control statements and
PUNCH commands, you must spool your punch using the CONT option, so that a
close request does not affect the file:

CP SPOOL PUNCH TO * CONT
&PUNCH FIRST FILE
&PUNCH
PUNCH FILE1 TEST (NOHEADER
&PUNCH SECOND FILE
&PUNCH
PUNCH FILE2 TEST (NOHEADER
CP SPOOL PUNCH CLOSE NOCONT

The preceding example punches title lines introducing the files punched with the
CMS PUNCH command. The null &PUNCH statements punch blank lines. The
PUNCH command is issued with the NOHEADER option, so that a read control
card is not punched.

You can also use an EXEC procedure to punch a job to send to the CMS batch
facility for processing. The batch facility, and an example of using an EXEC to
punch a job to it, are described in Chapter 12, "Using the CMS Batch Facility"

Using &PUNCH and &BEGPUNCH

All lines punched to the virtual card punch are fixed-length, 80-character records.
When you use the &PUNCH control statement in a fixed-length EXEC file, EXEC
scans only the first 72 columns of the EXEC.

If you want to punch a word that contains more than eight characters, you must use
the &BEGPUNCH control statement, which also, in fixed-length files, causes
EXEC to punch data in columns 1 through 80.

Using CMS EXECs with CMS Commands

B-48 VM/SP eMS User's Guide

Whenever you create a CMS EXEC file you are, for all practical purposes, creating
a new CMS command. When you enter a command line in the CMS environment,
CMS searches for a CMS EXEC file with the specified filename before searching
for a MODULE file or CMS command. You can place the names of your EXEC
files in a synonym table and assign minimum truncation values for the synonyms,
just as you can for CMS command names.

While many of your EXEC procedures may be very simple, others may be very
long and complicated, and perform many of the housekeeping functions performed
by CMS commands, such as syntax checking, error message generation, and so on.

Monitoring CMS ComllUlnd Execution

Many, or most, of your EXEC procedures may contain sequences of CMS
commands that you want to execute. H your EXEC procedure contains no EXEC
control statements, each command line is displayed and then the command is
executed. If an error occurred, the CMS error message is displayed, followed by a
return code in the format:

+++ R(nnnnn) +++

where nnnnn is the nonzero return code from the CMS command. If the command
is not a valid CMS command, or the command function for SET or QUERY is
invalid and the implicit CP function is in effect, the return code is a -3:

+++ R(-0003) +++

You may also receive this error return when you use a CP command without
prefacing it with the CP command. If you enter an unknown CP command
following "CP," you receive a return code of 1.

If a command completes successfully, no return code is displayed.

If you do not want to see the command lines displayed before execution, nor return
codes following execution, you can use the EXEC control statement:

&eONTROL OFF

Or, if you want to see only the command lines that produced errors, and the
resultant return codes, you can specify:

&eONTROL ERROR

Regardless of these settings of the &CONTROL statement, CMS error messages
are displayed, as long as the value of &READFLAG is RT, and the terminal is
displaying output.

If you issue the LISTFILE, STATE, ERASE, or RENAME commands in an EXEC
procedure, and you do not want to see the error message FILE NOT FOUND
displayed, you can use the statement:

&eONTROL NOMSG

to suppress the display of these particular messages.

You can request that particular timing information be displayed during an EXEC's
execution. If you want to display the time of day at which each command executes,
you can specify:

&eONTROL TIME

Then, as each command line is displayed, it is prefaced with the time; for example:

&eONTROL eMS TIME
QUERY BLIP

Appendix B. The CMS EXEC Processor B-49

executes as follows:

10:34:16 QUERY BLIP
BLIP = *

If you wish to see, following the execution of each CMS command, specific CPU
timing information, such as the long form of the ready message, you can use the
&TIME control statement. For example:

&TIME ON
QUERY BLIP
QUERY FILEDEF

might execute as:

QUERY BLIP
BLIP = OFF
T=0.01/0.04 10:44:21

QUERY FILEDEF
NO USER DEFINED FILEDEF'S IN EFFECT
T=O.01/0.04 10:45:26

Handling Error Returns From CMS Commands

In many cases, you want to execute a command only if previous commands were
successful. For example, you would not want to execute a PRINT command to
print a file if you had been unable to access the disk on which the file resided.
There are two methods, using EXEC procedures, that allow you to monitor and
control what happens following the execution of CMS commands. One method
uses the EXEC control statement &ERROR to transfer control when an error
occurs; the other tests the special variable &RETCODE upon completion of a CMS
command to determine whether that particular command completed successfully.

Using the &ERROR Control Statement

B-50 VM/SP eMS User's Guide

When a CMS command is executed within a CMS EXEC, a return code is passed
to the EXEC interpreter, indicating whether or not the command completed
successfully. If the return code is nonzero, EXEC then activates the &ERROR
control statement currently in effect. For example, if the following statement is
included at the beginning of an EXEC file:

&ERROR &EXIT

then, whenever a CMS command (or user program) completes with a nonzero
return code, the &EXIT statement in the &ERROR statement is executed, and the
EXEC terminates processing. You might use a similar statement in your EXECs to
ensure that they do not attempt to continue processing in the event of an error.

An &ERROR control statement can specify any executable statement. It may
transfer control to another portion of the EXEC, or it may be a single statement
that executes before control is returned to the next statement in the EXEC. For
example:

&ERROR &GOTO -EXIT

transfers control to the label-EXIT, in case of any CMS error. The statement:

&ERROR &TYPE CMS ERROR

results in the display of the message "CMS ERROR" before returning control to
the statement following the command that caused the error.

If you do not have an &ERROR control statement in an EXEC, or if you specify
&ERROR with no operands, EXEC takes no special action when a CMS command
returns with an error return code. Specifying &ERROR with no operands is the
same as specifying:

&ERROR &CONTINUE

Since an &ERROR control statement remains in effect for the remainder of the
EXEC execution, or until another &ERROR control statement is encountered, you
may use &ERROR &CONTINUE to restore default processing.

Using the &RETCODE Special Variable

An error return from a CMS command, in addition to calling an &ERROR control
statement, also places the return code value in the EXEC special variable
&RETCODE. Following the execution of any CMS command in an EXEC
procedure, you can test whether or not the command completed without error. For
example:

TYPE ALPHA FILE A
&IF &RETCODE ,= 0 &EXIT
TYPE BETA FILE A
&IF &RETCODE ,= 0 &EXIT

Note: The value of &RETCODE is modified after the execution of each CMS
command.

The value of &RETCODE is affected by your own programs. If you execute a
program in your EXEC using the LOAD and START (or FETCH and START)
commands, or if you execute a MODULE file, then the &RETCODE special
variable contains whatever value was in general register 15 when the program
exited. If you are nesting EXEC procedures, then &RETCODE contains the value
passed from the &EXIT statement of the nested EXEC.

You can use the value of the return code, as well, to analyze the extent or the cause
of the error and to set up an error analysis routine accordingly. For example,
suppose you want to set up an analysis routine to identify return codes 1 through
11 and to exit from the EXEC when the return code is greater than 11. When a
return code is identified, control is passed to a corresponding routine that attempts
to correct the error. You could set up such an analysis routine as follows:

Appendix B. The CMS EXEC Processor B-51

-ERRANAL
&CNT = 0
&LOOP 2 &CNT EQ 12
&IF &RETCODE EQ &CNT &GOTO -FIX&CNT
&CNT = &CNT + 1

-FIXO &GOTO -ALLOK
-FIX1

&GOTO -ALLOK
-FIX2

&GOTO -ALLOK

-FIX11

-ALLOK

When the value of the &CNT variable equals the return code value in
&RETCODE, the branch to the corresponding -FIX routine is taken. Each
corrective routine performs different actions, depending on its code, and finishes at
the routine labeled -ALLOK.

You can, in some cases, determine the cause of a CMS command error and attempt
to correct it in your EXEC. To do this, you must know the return codes issued by
VM/SP commands. See VM/SP System Messages and Codes for a discussion of
the return codes for VM/SP commands. In addition, the error messages and
corresponding return codes are listed under the command descriptions for each
CMS command in the VM / SP CMS Command and Macro Reference.

As an example, all CMS commands that search for files issue a return code of 28
when a file is not found. If you want to test for a file-not-found condition in your
EXEC, you might use statements similar to the following:

&CONTROL OFF NOMSG

TYPE HELP MEMO A
&IF &RETCODE = 28 &GOTO -NOFILE

Tailoring eMS Commands for YOUI' Own Use

B-52 VM/SP eMS User's Guide

You can create CMS EXEC procedures that simplify or extend the use of a
particular CMS command. Depending on your applications, you can modify the
CMS command language to suit your needs. You can create EXEC files that have
the same names as CMS commands, and, since CMS locates EXEC files before
MODULE files, the EXEC is found first. For example, the COPYFILE command,
when used to copy CMS disk files, requires six operands. If you change only the
filename when you copy files, you could create a COpy EXEC as follows:

&CONTROL OFF
&IF &INDEX ,= 3 &SKIP 2
COPYFILE &1 &2 = &3 &2 =
&EXIT
COPYFILE &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 &15

If you always invoke the COPYFILE command using the truncation COPY, EXEC
processes the command line for you, and if you have entered the three arguments,
EXEC formats the COPYFILE command for you. If any other number of
arguments is entered, the COPYFILE command is invoked with all the arguments
as entered.

Creoting Your Own Default Filetypes

If you use special filetypes for particular applications and they are not among those
that the CMS editor supplies default settings for, but do require special editor
settings, you can create a CMS EXEC to invoke the CMS editor. The CMS EXEC
can check for particular filetypes, and if it finds them, stack the appropriate EDIT
subcommands. If you name this EXEC procedure E EXEC, then you can bypass it
by using a longer form of the EDIT command. The following is a sample E EXEC:

&CONTROL OFF
&IF &INDEX GT 1 &SKIP 2
EDIT &1 SCRIPT
&EXIT
&IF &2 EQ TABLE &GOTO -TABLE
&IF &2 EQ CHART &GOTO -CHART
&IF &2 EQ EXEC &GOTO -EX
&IF &2 EQ SYSIN &GOTO -SYSIN
-NORM EDIT &1 &2 &3 &4 &5 &6
&EXIT
-TABLE &BEGSTACK
IMAGE ON
TABS 1 10 20
CASE M
&END
EDIT &1 &2 &3 (LRECL 20
&EXIT
-CHART &BEGSTACK
CASE M
IMAGE ON
&END
EDIT &1 &2 &3
&EXIT
-EX
EDIT &1 &2 &3 (LRECL 130
&EXIT
-SYSIN &BEGSTACK
TABS 1 10 16 31 36 41 46 69 72 80
SERIAL ON
TRUNC 71
VERIFY 72
&END
EDIT &1 &2 &3
&EXIT

This CMS EXEC defines special characteristics for filetypes CHART, TABLE,
and SYSIN, and defaults an EXEC file to 130-character records. If only one
argument is entered, it is assumed to be the filename of a SCRIPT file. Since the
editor is invoked from within the EXEC, control returns to EXEC after you use the
FILE or QUIT subcommands during the edit session. You must use the &EXIT
control statement so that the EXEC does not continue processing, and execute the
next EDIT command in the file.

Appendix B. The CMS EXEC Processor B-53

Refining Your CMS EXEC Procedures

This section provides supplementary information for writing complex EXEC
procedures. Although the EXEC interpreter resembles, in some aspects, a
high-level programming language, you do not need to be a programmer to write
EXECs. Some of the techniques suggested here, for example, on annotating and
writing error messages, are common programming practices, which help make
programs self-documenting and easier to read and to use.

Annotating CMS EXEC Procedures

&CONTROL OFF
&IF &INDEX = 1 &IF &1

-TELL &BEGTYPE

Lines in a CMS EXEC file that begin with an asterisk (*) are commentary and are
treated as comments by the EXEC interpreter. You can use * statements to
annotate your EXECs. If you write EXECs frequently, you may find it convenient
to include a standard comment at the beginning of each EXEC, indicating its
function and the date it was written, for example:

* EXEC TO HELP CONVERT LISTING FILES
* INTO SCRIPT FILES
* J. BEAN 10/18/75

You can also use single asterisks or null lines to provide spacing between lines in an
EXEC file to make examining the file easier.

In an EXEC, you cannot place comments on the same line with an executable
statement. If you want to annotate a particular statement or group of statements,
you must place the comments either above or below the lines you are annotating.

A good practice to use, when writing EXECs, is to set them up to respond to a ?
(question mark) entered as the sole argument. For example, an EXEC named
FSORT might contain:

? &GOTO -TELL

CORRECT FORM IS ' FSORT USERID <VADDR> '

&END

PRINTS AN ALPHABETIC LISTING OF ALL FILES ON THE SPECIFIED
USER'S DISK. IF A VIRTUAL ADDRESS (VADDR) IS NOT
SPECIFIED, THE USER'S 191 IS THE DEFAULT.

You may also wish to anticipate the situation in which a user might enter an EXEC
name with no arguments for an EXEC that requires arguments:

B-54 VM/SP eMS User's Guide

Error Situations

Writing E17'Or Messages

&IF &INDEX
&IF &INDEX

o &GOTO -HELP
1 &IF &1 = ? &GOTO -TELL

&EXIT
-HELP &BEGTYPE

&END
&EXIT

CORRECT FORM IS ' COPY OLDFN OLDFT NEWFN '
TYPE 'COPY?' FOR MORE INFO

-TELL &BEGTYPE

&END
&EXIT

CORRECT FORM IS ' COpy OLDFN OLDFT NEWFN '
USES COPYFILE COMMAND TO CHANGE ONLY THE FILENAME

This type of annotating is especially useful if you share your disks or your CMS
EXECs with other users.

It is good practice, when writing CMS EXECs, to anticipate error situations and to
provide meaningful error or information messages to describe the error when it
occurs. The following error situations, and suggestions for handling them, have
already been discussed:

• Errors in invoking the EXEC, either with an improper number of arguments, or
with invalid arguments. (See "Arguments" in "Building CMS EXEC
Procedures. ")

Errors in CMS command processing that can be detected with an &ERROR
control statement or with the &RETCODE special variable. (See "Handling
Error Returns from CMS Commands")

Many different kinds of errors may also occur, in the processing of your CMS
EXEC control statements. EXEC processing errors, such as an attempt to branch
to a nonexistent label or an invalid syntax, are "unrecoverable" errors. These
errors always terminate CMS EXEC processing and return your virtual machine to
the CMS environment or to the calling EXEC procedure or program. The error
messages produced by EXEC, and the associated return codes, are described in the
VM/SP System Messages and Codes.

One way to make your CMS EXECs more readable, especially if they are long
EXECs, is to group all of your error messages in one place, probably at the end of
the EXEC file. You may also wish to number your messages and associate the
message number with a label number and a return code. For example:

Appendix B. The CMS EXEC Processor B-55

&IF &CT > 100 &GOTO -ERR100
&IF &CT < 0 &GOTO -ERR200

&IF &RETCODE EQ 28 &GOTO -ERR300

-ERR 1 00
&TYPE COUNT TOO HIGH
&EXIT 100
-ERR200
&TYPE COUNT TOO LOW
&EXIT 200
-ERR300
&TYPE &1 &2 NOT ON DISK 'C'.
&EXIT 300

Using the &EMSG Control Statement

There is a facility, available in the EXEC processor, which allows you to write
error messages that use the standard VM/SP message format, with an
identification code and message number, as well as message text. When you use
the &EMSG or &BEGEMSG control statement, the EXEC interpreter scans the
first token and checks to see if the seventh (and last character) is an I, E, or W,
representing information, error, or warning messages, respectively. If so, then the
message is displayed according to the CP EMSG setting (ON, OFF, CODE, or
TEXT). For example, if you have the statement:

&EMSG ERROR1E BAD ARGUMENT ' &1 '

the ERRORIE is considered the code portion of the message and BAD
ARGUMENT is the text. If you have issued the CP command:

cp set ernsg text

when this &EMSG statement is executed it may display:

BAD ARGUMENT ' PRNIT '

where PRNIT is the argument that is invalid. When you use &EMSG (or
&BEGEMSG, which allows you to display error messages of unscanned data), the
code portion of the message is prefixed with the characters DMS, when displayed.
For example:

&BEGEMSG
ERROR2E INCOMPATIBLE ARGUMENTS
&END

displays when the EMSG setting is ON:

DMSERROR2E INCOMPATIBLE ARGUMENTS

You should use the &BEGEMSG control statement when you want to display lines
that have tokens longer than eight characters; however, no variable substitution is
performed.

Debugging CMS EXEC Procedures

B-56 VM/SP eMS User's Guide

If you have difficulty getting an EXEC procedure to execute properly, or if you are
modifying an existing EXEC and wish to test it, there are a couple of simple
techniques that you can use that may save you time.

Using eMS Subset

One is to place the &CONTROL ALL control statement at the top of your EXEC
file. When &CONTROL ALL is in effect, all the EXEC control statements are
displayed before they execute, as well as the CMS command lines. One of the
advantages of using this method is that the line is displayed after it is scanned, so
that you can see the results of symbol and variable substitution.

"Stacking CMS EXEC Files" described a PREFIX EXEC, which changes the
prefixes of groups' of files. If the EXEC had an &CONTROL ALL statement, it
might execute as follows:

prefix pt ag
&CONTROL ALL
&LNAME = &CONCAT PT *
LISTFILE PT* SCRIPT * (EXEC
EXEC CMS &STACK
&LOOP -END &READFLA EQ CONSOLE
LOOP UNTIL: STACK EQ CONS
&READ VARS &NAME &TYPE &MOD
&SUFFIX = &SUBSTR PTA 3 6
&NEWNAM = &CONCAT AG A
RENAME ,PTA SCRIPT A1 AGA SCRIPT A1
&IF 0 EQ 0 &SKIP
&SKIP
LOOP UNTIL: STACK EQ CONS
&READ VARS &NAME &TYPE &MOD
&SUFFIX = &SUBSTR PTB 3 6
&NEWNAM = &CONCAT AG B
RENAME PTB SCRIPT A1 AGB SCRIPT A1
&IF 0 EQ 0 &SKIP
&SKIP
LOOP UNTIL: CONSOLE EQ CONS
R;

You can see from this execution summary that the files named PTA SCRIPT and
PTB SCRIPT are renamed to AGA SCRIPT and AGB SCRIPT. Notice that the
&LOOP statement results in a special LOOP UNTIL statement in the execution
summary, which indicates the condition under which the loop executes.

When you are using the CMS editor to create or modify a CMS EXEC procedure,
you can test the EXEC in the CMS subset environment, as long as the EXEC does
not issue any CMS commands that are invalid in CMS subset.

Before entering CMS subset with the CMS subcommand, you must issue the SA VB
subcommand to write the current version of the EXEC onto disk; then, in CMS
subset, execute the EXEC. For example:

Appendix B. The CMS EXEC Processor B-57

edit new exec
NEW FILE:
EDIT:
input
INPUT:
&a = &1 + &2 + &3
&type answer is &a

EDIT:
save
EDIT:
ems
eMS SUBSET
new 34 56 899
ANSWER IS 989
R;
return
EDIT:
quit
R;

If the EXEC does not execute properly, you can return to the edit environment
using the RETURN command, modify the EXEC, reissue the SA VB and CMS
subcommands, and attempt to execute the EXEC again.

Summary of CMS EXEC Interpreter Logic

B-58 VM/SP eMS User's Guide

The following information is provided for those who have an interest in how the
CMS EXEC interpreter works. It may help you in debugging your EXEC
procedures if you have some idea of how processing is done by EXEC. When an
EXEC file is invoked for execution, the EXEC interpreter examines each statement
and analyzes it, according to the following sequence:

1. If the first nonblank character of the line is an *, the line is counted and
ignored.

2. Null lines, except as a reponse to an &READ statement, are also counted and
ignored.

3. The line is scanned, and nonblank character strings are placed in tokens.

4. All EXEC special variables, and then all user variables, except for those that
appear as the target of an assignment statement, are substituted.

5. All blank tokens (resulting from the substitution of undefined symbols) are
discarded.

6. If the first nonblank character is a hyphen (-), indicating a label, the next token
is considered the first token.

7. If the first logical token does not begin with an ampersand (&), the line is
passed to CMS for execution. The return code from CMS is placed in the
special variable &RETCODE.

8. If the first logical token begins with an ampersand (&) EXEC interprets the
statement.

9. If a statement is syntactically invalid and can be made valid by adding a token
of blanks at the end, EXEC adds blanks, for example:

Writing eMS EDIT Macros

&BLANK =
&TYPE
&LOOP 3 &X NE

All of the above are valid EXEC control statements.

10. EXEC executes the statement. If no error is encountered, control passes to the
next logical statement. If an error is encountered, EXEC terminates
processing.

Note: For information on the EXEC 2 interpreter, see VM/SP EXEC 2 Reference.

If you have a good knowledge of the CMS EXEC facilities and an understanding
of the CMS editor, you may wish to write edit macros. An edit macro is simply an
EXEC file that contains a sequence of EDIT subcommands. Edit macros should
only be invoked from the edit environment. An edit macro may contain a simple
sequence of EDIT subcommands, or its execution may be dependent on arguments
you enter when you invoke it. This section provides information on creating edit
macros, suggestions on how to manipulate the console stack, and some examples of
macros that you can create and use.

Creating CMS Edit Macro Files

An edit macro must have a filename beginning with a dollar sign ($) and a filetype
of EXEC. Rules for file format, scanning and token substitution are the same as
for all other EXEC files. A macro file may contain:

• EDIT subcommands
• CMS EXEC control statements
• CMS commands that are valid in CMS subset

When you create an edit macro that accepts arguments, you should be sure to
check the validity of the arguments, and issue appropriate error messages. If you
are writing an edit macro to expect arguments, you must keep in mind that the
macro command line is scanned, and that any data items you enter are padded or
truncated into eight-character tokens. Tokens are always translated to uppercase
letters.

You should annotate all of your macro files, and provide a response to a question
mark (?) entered as the sole argument (as described under" Annotating CMS
EXEC Procedures."

How CMS Edit Macros Work

Since an edit macro is a CMS EXEC file, it is actually executed by the CMS EXEC
interpreter, and not by the CMS editor. The CMS EXEC interpreter can only
execute EXEC control statements and CMS commands. The only way to issue an
EDIT subcommand from an EXEC file is to stack the subcommand in the console
stack, so that when the editor is invoked, or receives control, it reads the
subcommand(s) from the console stack before accepting input lines from the
terminal. For example:

&STACK CASE M
&STACK RECFM V
EDIT &1 CHART A1

Appendix B. The CMS EXEC Processor B-59

B-60 VM/SP eMS User's Guide

When the EDIT command is invoked from this EXEC, the CMS editor reads the
subcommands from the stack and executes them.

To execute these same subcommands from an edit macro file, you must use the
same technique; that is, you must place the sub commands in the console stack, for
example:

&BEGSTACK
CASE M
RECFM V
&END
&EXIT

If this were an EXEC file named $V ARY, you might execute it from the edit
environment as follows:

edit test file
NEW FILE.
EDIT:
$vary

Stacked subcommands are executed only when the CMS EXEC completes its
execution, either by reaching the end of the file, or by processing an &EXIT
statement.

When you stack EDIT subcommands, you can use the &ST ACK and
&BEGST ACK control statements. If you are stacking a subcommand that uses a
variable expression, you must use the &ST ACK control statement, rather than the
&BEGSTACK control statement. The following EXEC, named $T, displays a
variable number of lines and then restores the current line pointer to the position it
was in when the EXEC was invoked:

&CONTROL OFF
&IF &INDEX EQ 0 &GOTO -ERR
&CHECK = &DATATYPE &1
&IF &CHECK NE NUM &GOTO -ERR
&STACK TYPE & 1
&UP = & 1 - 1
&STACK UP &UP
&EXIT
-ERR &TYPE CORRECT FORM IS < $T N >
&EXIT 1

This edit macro uses the built-in function &DATATYPE to check that a numeric
operand is entered.

CMS commands in an edit macro are executed as they are read by the CMS EXEC
interpreter, just as they would if the EXEC were invoked in the CMS environment.
You could create a $TYPE edit macro, for example, that would allow you to
display a file from the edit environment:

&CONTROL OFF
TYPE &1 &2 &3 &4 &5 &6 &7

Or you might create a $ST ATE EXEC that would verify the existence of another
file:

&CONTROL OFF
STATE &1 &2 &3

The Console Stack

Top of File and End of File

Stacking LIFO

In both of these examples, the macro file invokes the CMS command. Macros like
these can eliminate having to enter CMS subset environment to execute one or two
simple CMS commands. You must be careful, though, not to execute any CMS
command that uses the storage occupied by the editor. Only commands that are
valid in CMS subset are valid in an edit macro.

When you write an edit macro, you want to be sure that there are no EDIT
subcommands in the stack that could interfere with the execution of the
subcommands stacked by the macro file. Your macro should check whether there
are any lines in the stack, and if there are, it should clear them from the stack. For
example, you might use the lines:

&IF &READFLAG EQ CONSOLE &SKIP 2
DESBUF
&TYPE STACKED LINES CLEARED BY &0

The message "STACKED LINES CLEARED BY macro name" is issued by the
edit macros distributed with the VM/SP system. $0 is the name of the macro.
You may also want to use this convention in your macros, to alert a user that the
console stack has been cleared.

When an edit macro is invoked and the current line pointer is positioned at the top
of the file or at the end of the file, the editor stacks a token in the console stack. If
the line pointer is at the top of the file, the token stacked is "TOF"; if the line'
pointer is at the end of the file the token stacked is "EOF." If you write an edit
macro that does not check the status of the console stack, and the macro is invoked
from the top or the end of the file, you receive the message:

?EDIT: TOF
or

?EDIT: EOF

The editor does not recognize these tokens as valid subcommands.

You may want to use these tokens to test whether the EXEC is invoked from the
top or end of the file. If you want to clear these tokens in case the macro has been
invoked from the top or end of the file, you might use the statement:

&IF &READFLAG EQ STACK &READ VARS

which clears the token from the stack.

If you do not want to clear the console stack when you execute an edit macro, you
can stack all of the subcommands using the LIFO (last-in first-out) operand of the
&ST ACK and &BEGST ACK control statements. For example, suppose
$FORMAT is the name of the following edit macro:

&BEGSTACK LIFO
TABSET 3 10 71
TRUNC 71
PRESERVE
&END

Appendix B. The CMS EXEC Processor B-61

Error Situations

When this edit macro is executed, the sub commands are placed in the console stack
in front of any existing lines. For example, if this macro were invoked:

$format#input

the subcommands would execute in the following order: PRESERVE, TRUNC,
TABSET, INPUT. If the subcommands were stacked FIFO (first-in first-out), the
default, the INPUT subcommand would be the first to execute (since it is the first
command in the stack) and the remaining sub commands would be read into the file
as input lines.

If a eMS EXEC processing error occurs during the execution of an edit macro, the
editor clears the console stack and issues the "STACKED LINES CLEARED"
message. A CMS EXEC processing error is one that causes the error message
DMSEXT072E:

ERROR IN EXEC FILE filename, LINE nnnn - description

These errors cause the CMS EXEC interpreter to terminate processing. Any
stacked subcommands are cleared before the editor regains control, so that none of
the subcommands are executed, and the file remains unchanged.

You should also ensure that any error handling routines in your edit macros clear
the stack if an error occurs. Otherwise, the editor may begin reading invalid data
lines from the stack and attempt to execute them as EDIT subcommands.

You should not interrupt the execution of an edit macro by using the Attention or
Enter key, and then entering a command or data line. Results are unpredictable,
and you may inadvertently place unwanted lines in the stack.

If your edit macro contains a CMS command that is invalid in the CMS subset
environment, you receive a return code of -2.

The maximum number of lines that you can stack in an edit macro varies according
to the amount of free storage that is available to CMS at the time of the stacking
request. If you stack too many lines, the editor terminates abnormally.

Notes on Using EDIT Subcommands

B-62 VM/SP eMS User's Guide

You can use any EDIT subcommand in a macro file, and there is one special
subcommand whose use only has meaning in a macro: the STACK subcommand.
For the most part, there is not any difference between executing an EDIT
subcommand from the edit environment, or from an EXEC edit macro. You do
have to remember, however, that if you want a variable symbol on a subcommand
line, you must stack that subcommand using the &ST ACK control statement rather
than following an &BEGST ACK control statement.

Listed below are some notes on using various EDIT subcommands in your macro
files. You may find these notes useful when you design your own macros.

PRESERVE, VERIFY, and RESTORE: Often, you may want to create an edit
macro that alters the characteristics of a file (format, tab settings, and so on). To
ensure that the original characteristics are retained when the macro has finished
executing, you can stack the PRESERVE subcommand as the first subcommand in
the stack, and the RESTORE subcommand as the last subcommand in the stack:

&BEGSTACK
PRESERVE
CASE M
I A lowercase line
RESTORE
&END

The PRESERVE and RESTORE subcommands save and reinitialize the settings
for the CASE, FMODE, FNAME, IMAGE, LINEMODE, LONG, RECFM,
SERIAL, SHORT, TABSET, TRUNC, VERIFY, and ZONE subcommands.

In an edit macro that issues many subcommands that display lines in response to
CHANGE or LOCATE subcommands, you may want to turn the verification
setting to OFF to suppress displays during the execution of the edit macro:

&BEGSTACK
PRESERVE
VERIFY OFF

RESTORE
&END

You would particularly want to turn verification off for a macro that executes in a
loop or that issues a global request. If you want a line or series of lines displayed,
you can use the TYPE subcommand.

If you have verification set off in an edit macro, then when you execute it you may
not receive any indication that the edit macro completed execution. The keyboard
unlocks to accept your next EDIT subcommand from the terminal. To indicate that
the macro is finished, you can stack, as the last subcommand in the procedure, a
TYPE subcommand, to display the current line. Or, if you write an edit macro that
terminates when an end-of-file condition occurs the EOF: message issued by the
editor may indicate the completion of the macro.

INPUT, REPLACE: To change from edit mode to input mode in an edit macro,
you can use the INPUT and REPLACE subcommands. In a fixed-length EXEC
file, you must stack these subcommands using the &ST ACK control statement:

&STACK INPUT
-- or -

&STACK REPLACE

If you use either of these subcommands following an &BEGST ACK control
statement, the subcommand line is padded with blanks to the line length and the
result is a line of blanks inserted into the file.

In a variable-length EXEC file, lines are not padded with blanks, so the INPUT
and REPLACE subcommands with no data line execute the same following an
&BEGST ACK control statement as they do when stacked with the &ST ACK
control statement.

Going From Input Mode to Edit Mode: To stack a null line in an edit macro, to
cause the editor to leave input mode, you must use the &ST ACK control statement
with no other tokens, as follows:

&STACK

Appendix B. The CMS EXEC Pro~ssor B-63

B-64 VM/SP eMS User's Guide

CHANGE, DSTRING, LOCATE: If you want to use the CHANGE, DSTRING, or
LOCATE subcommands in an EXEC, you must take into account that when you
stack any of these subcommands using the &ST ACK control statement, all of the
character strings on the line are truncated or padded to eight characters. Also, if
you want to use a variable value for a character string, you are limited to eight
characters, all uppercase.

For example, if a macro is used to locate a character string and delete the line on
which it appears, the LOCATE subcommand has a variable symbol:

&STACK LOCATE /&1
&STACK DEL

IMAGE, TABSET, OVERLAY: The TAB SET and OVERLAY subcommands allow
you to set margins and column stops for records in a file and to overlay character
strings in particular positions. For example, the following macro places a vertical
bar in columns 1, 15, 40, and 60 for all records in the file from the current line to
the end of the file:

&BEGSTACK
PRESERVE
IMAGE ON
TABSET 1 15 40 60
REPEAT *
o 1->1->1->1
RESTORE
&END

In the above example, the "->" symbol represents a tab character (X'05'). To
create this EXEC, you can either issue the EDIT subcommand:

image off

and use the Tab key (or equivalent) on your terminal when you enter the line, or
you can enter some other character and use the ALTER subcommand to alter that
character to a X'05'.

If you want to overlay only one character string in a particular position in a file,
you can use the T ABSET subcommand to set that column position as the left
margin, and then use the OVERLA Y subcommand, as follows:

&CONTROL OFF
&BEGSTACK
PRESERVE
VERIFY OFF
TRUNC *
TABS 72
&END
&STACK REPEAT & 1
&BEGSTACK
OVERLAY C
RESTORE
&END

If you name this file $CONT EXEC, and if you invoke it with the line:

$cont 3

then the OVERLA Y subcommand is executed on three successive lines, to place
the continuation character "C" in column 72.

'I1Ie STACK Subcommand

The STACK subcommand allows you to stack up to 25 lines from a file in the
console stack. The lines are not deleted from the file, but the line pointer is moved
to point to the last line stacked.

You can also use the STACK subcommand to stack EDIT subcommands. You
might do this if there were subcommands that you wanted to place in the stack to
execute after all the subcommands stacked by the EXEC had executed.

These techniques are used in the two edit macros that are distributed with the
VM/SP system: $MOVE and $DUP. If you want to examine these files for
examples of how to use the STACK subcommand, you can display the files by
entering, from the CMS environment:

type $move exec *
type $dup exec *

An additional use of the STACK subcommand is shown in "An Annotated Edit
Macro."

Appendix 8. The CMS EXEC Processor 8-65

An Annotated Edit Macro

B-66 VM/SP eMS User's Guide

The edit macro shown below, $DOUBLE, can be used to double space a CMS file.
Regardless of where the current line pointer is, a blank line is inserted in the file
following every existing line. The statements in the edit macro are separated into
groups; the number to the left of a statement or group of statements indicates an
explanatory note. The numbers are not part of the EXEC file.

&CONTROL OFF

2 &IF &INDEX &IF &1 ? &GOTO -TELL

3 &IF &INDEX &IF &1 TWO &GOTO -LOOP

4 &IF &INDEX NE 0 &GOTO -TELL

5 &IF &READFLAG EQ STACK &READ VARS &GARB

6 &STACK
&STACK PRESERVE
&STACK VERIFY OFF

7 &STACK BOTTOM
&STACK I XXXXXXXX
&STACK TOP

8 -LOOP
&BEGSTACK
NEXT
STACK
INPUT
&END

9 &READ ARGS
&IF .&1 = . &SKIP
&IF &1 EQ XXXXXXXX &SKIP 2

10 -ENDLOOP &STACK $DOUBLE TWO

11 &EXIT

12 DESBUF
&BEGSTACK
UP 2
DEL 3
TYPE
RESTORE
&END

&EXIT

13 -TELL
&IF &READFLAG EQ STACK &READ VARS
&BEGTYPE
CORRECT FORM IS: $DOUBLE

THIS EXEC DOUBLE SPACES A FILE BY INSERTING
A BLANK LINE FOLLOWING EVERY LINE IN THE FILE
EXCEPT THE LAST.
&END

Explanation by number

1. The &CONTROL statement suppresses the display of CMS commands, in this
case, the DESBUF command.

2. The first &IF checks that there is only one operand passed in the $DOUBLE
command. The second &IF checks whether $DOUBLE has been invoked with
a question mark (?). If both &IFs are true, control is passed to the statement at
the label -TELL. &TYPE control statements at -TELL explains what the
macro does.

3. The second &IF statement checks whether $DOUBLE has been invoked with
the argument TWO, which indicates that the macro has executed itself, so the
sub commands that initialize the file are stacked only once.

4. There are three ways to properly invoke this edit macro: with a ?, with the
argument TWO, or with no arguments. The third &IF statement checks for the
(no arguments) condition; if the macro is invoked any other way, control is
passed to the label -TELL, which explains the macro usage.

5. The &READFLAG special variable is checked. If $DOUBLE is executed at
the top or at the end of the file, the token TOF or EOF is in the stack, and
should be read out.

6. A null line is placed in the console stack for loop control (see Note 9.) The
PRESERVE and VERIFY subcommands are stacked so that the editor does
not display each line in the file as it executes the stacked subcommands.

7. The BOTTOM, INPUT, and TOP sub commands initialize the file by placing a
marker at the bottom of the file, and then positioning the current line pointer at
the top of the file.

8. The NEXT, STACK, and INPUT sub commands are going to be repeated for
each line in the file. The INPUT subcommand with no data line stacks a null
line. Note that in order for $DOUBLE to execute this subcommand properly,
$DOUBLE EXEC must have fixed-length records. Each line is stacked, with
the STACK subcommand; this stacked line is checked in the read loop (Note
9). When the stacked line is equal to the marker, XXXXXXXX, it indicates
that the end of the file has been reached.

9. These lines check for an end of file, which occurs when the line containing the
marker is read. The first time this loop is executed, the stack contains the null
line (statement 6), so the check for the marker is skipped.

10. The last subcommand stacked is $DOUBLE TWO, which re-invokes
$DOUBLE, but causes it to skip the first sequence of subcommands.

11. The &EXIT statement causes an exit from $DOUBLE, so that all the EDIT
subcommand stacked thus far are executed.

12. When the marker is read in, the EXEC clears the stack, moves the current line
pointer to point to the null line added above the marker, and deletes that line,
the marker, and the null line that was inserted following the marker. The
RESTORE subcommand restores editor settings.

Appendix B. The CMS EXEC Processor B-67

User-Written Edit Macros

$MACROS

13. This edit macro is self-documenting. If $DOUBLE is invoked with a question
mark, or invoked with an argument, information regarding its proper use is
displayed.

You can create the edit macros shown below, for your own use in CMS. You may
want to refer to them as examples when you are learning to write your own macros.
The macros have not been formally tested by mM; they are presented for your
convenience only.

The $MACROS edit macro verifies the existence of and describes the usage of edit
macros. If you enter:

$macros

it lists the filenames of all the edit macros on your accessed disks. If you enter:

$macros name1 name2

it displays, for each valid macro name entered, the macro format and usage. (This
macro assumes that all macros have been designed to respond to a ? request.) The
format of the $MACROS edit macro instruction is:

$ MACROS [filename1 [filename2 [filenamen]]]

B-68 VM/SP eMS User's Guide

filename
is the filename(s) of macro files whose usage is to be displayed. If filename
is omitted, the filenames of all available macro files are listed.

To create $MACROS, enter:

edit $macros exec

and in input mode, enter the following:

$MARK

$ MARK

&CONTROL OFF
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL
&IF &INDEX GT 0 &GOTO -PARTIC

* &BEGTYPE ALL
EXEC FILES STARTING WITH A DOLLAR-SIGN ARE AS FOLLOWS.
FOR INFORMATION ON ONE OR MORE OF THEM, TYPE:
$MACROS FILENAME1 <FILENAME2>
&END
LISTF $* EXEC * (NOHEADER FNAME)
&EXIT
*
-PARTIC &TRIP = 0
&INDEX1 = 0

* &LOOP -ENDLOOP &INDEX
&INDEX1 = &INDEX1 + 1
&SUB = &SUBSTR &&INDEX1 1 1
&IF &SUB EQ $ &GOTO -STATIT

~TYPE &&INDEX1 IS INVALID
&TRIP = 1
&GOTO -ENDLOOP
-STATIT STATE &&INDEX1 EXEC *
&IF &RETCODE EQ 0 &GOTO -CALLIT
&TYPE &&INDEX1 NOT FOUND
&TRIP = 1
&GOTO -ENDLOOP
-CALLIT EXEC &&INDEX1 ?
-ENDLOOP
*
&EXIT &TRIP
*
-TELL &BEGTYPE
'$MACROS' HANDLES THE '$MACROS' REQUEST.
TYPE '$MACROS' ALONE FOR MORE INFORMATION.
&END
&EXIT

The $MARK edit macro inserts from one to six characters, starting with the current
line and in the column specified, for a specified number of records. If there is data
already in the columns specified, it is overlayed. If you enter:

$mark

the macro places an asterisk (*) in column 72 of the current line. If you enter:

$mark 10 30 abc

the macro places the string ABC beginning in column 30 in each of ten records,
beginning with the current record. The format of the $MARK edit macro
instruction is:

where:

n

indicates the number of consecutive lines, starting with the record currently
being pointed to, that will be marked. If n is not specified, 1 is assumed, and
the other default values are also assumed.

Appendix B. The CMS EXEC Processor B-69

$POINT

B-70 VM/SP eMS User's Guide

col

char

indicates the starting column in each record where the character string is to
be inserted. The default is column 72.

indicates from one to six characters to be inserted in each record. The
default is an asterisk (*).

To create $MARK, enter:

edit $mark exec

and in input mode, enter the following:·

&CONTROL OFF
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL
&IF &INDEX GT 3 &GOTO -BADPARM
&INDEX1 = 1
&IF &INDEX GT a &INDEX1 = &1
&IF &INDEX1 LT a &GOTO -BADPARM
&INDEX2 = 72
&IF &INDEX GT 1 &INDEX2 = &2
&IF &INDEX2 LT a &GOTO -BADPARM
&IF &INDEX2 GT 133 &GOTO -BADPARM
&CHAR = *
&IF &INDEX EQ 3 &CHAR = &3
&LEN3 = &LENGTH &CHAR
&IF &LEN3 GT 6 &GOTO -BADPARM
&STACK LIFO RESTORE
&STACK LIFO OVERLAY &CHAR
&STACK LIFO REPEAT &INDEX1
&STACK LIFO TABS &INDEX2
&BEGSTACK LIFO
IMAGE ON
TRUNC *
VERIFY OFF
LONG
PRESERVE
&END
&EXIT

*
-BADPARM &BEGTYPE
INVALID $MARK OPERANDS
&END
&EXIT 1

*
-TELL &BEGTYPE
CORRECT FORM IS: $MARK <N <COL <CHAR»>
PUTS A 1-6 CHARACTER STRING IN COLUMN 'COL' OF 'N' LINES, STARTING
WITH THE CURRENT LINE. THE NEW CURRENT LINE IS THE LAST LINE
MARKED. DEFAULTS ARE: N=1; COL=72; CHAR=*.
&END
&EXIT

The $POINT edit macro positions the current line pointer at the specified line
number. The line numbers must be in columns 73 through 80 and padded with
zeros. For example, if you enter:

$point 800

the current line pointer is positioned at the line that has the serial number
00000800 in columns 73 through 80. The format of the $POINT macro instruction
is:

$POINT I key

&CONTROL OFF

where:

key
is a one- to eight-character line number. If the specified key is less than
eight characters long, it is padded with leading zeros.

To create $POINT, enter:

edit $point exec

and in input mode, enter the following:

&IF &INDEX EQ 0 &GOTO -TELL
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL
&IF &INDEX GT 1 &GOTO -BADPARM
&KEYL = &LENGTH &1
&INDEX1 = 8 - &KEYL
&Z = &SUBSTR 00000000 1 &INDEX1
&1 = &CONCAT &Z &1
&STACK LIFO RESTORE
&STACK LIFO FIND &1
&BEGSTACK LIFO
TOP
TABS 73
IMAGE ON
LONG
PRESERVE
&END
&EXIT

* -BADPARM &BEGTYPE ALL
INVALID $POINT OPERANDS
&END
&EXIT 1
* -TELL &BEGTYPE ALL
CORRECT FORM IS: $POINT KEY
IF 'KEY' CONTAINS LESS THAN 8 CHARACTERS, IT IS PADDED WITH LEADING
ZEROS. THE FILE IS THEN SEARCHED FROM THE TOP FOR 'KEY' IN COLUMNS
73-80.
&END
&EXIT

$ COL

$COL

The $COL edit macro inserts, after the current record in the file, a line containing
column numbers (that is, 1,6, 11, ... , 76). The format of the $COL macro
instruction is:

No operands are used with $COL. If any arguments are entered, the macro usage
is explained.

To create $COL, enter:

edit $col exec

Appendix B. The CMS EXEC Processor B-71

B-72 VM/SP eMS User's Guide

and in input mode, enter the following:

&CONTROL OFF
&IF &INDEX NE 0 &GOTO -TELL
&STACK LIFO RESTORE
&STACK LIFO
&BEGSTACK LIFO ALL
1 6 11 16 21 26 31 36 41 46 51 56 61 66
&END
&STACK LIFO INPUT
&BEGSTACK LIFO
TRUNC *
VERIFY OFF
LONG
PRESERVE
&END
&EXIT

*
-TELL &BEGTYPE
CORRECT FORM IS: $COL
INSERTS A LINE INTO THE FILE SHOWING COLUMN NUMBERS.
&END
&EXIT

71 76

Appendix C. Considerations for Line Mode Terminals

Logical Line Editing Symbols

Logical Character Delete

Logical Line End

Logical Line Delete

To aid you in entering command or data lines from your terminal, VM/SP provides
a set of logical line editing symbols, which you can use to correct mistakes as you
enter lines. Each symbol has been assigned a default character value. These
normally are:

Symbol
Logical character delete
Logical line end
Logical line delete
Logical escape

Character
@

¢

"

The logical character delete symbol (@) allows you to delete one or more of the
previous characters entered. The @ deletes one character per @ entered,
including the ¢ and # logical editing characters. For example:

ABC#@@ results in AB
ABC@D results in ABD
¢@DEF results in DEF
ABC@@@ deletes the entire string

The logical line end symbol (#) allows you to key in more than one command on
the same line, and thus minimizes the amount of time you have to wait between
entering commands. You type the # at the end of each logical command line, and
follow it with the next logical command line. VM/SP stacks the commands and
executes them in sequence. For example, the entry:

query blip#query rdymsg#query search

is executed in the same way as the entries:

query blip
query rdymsg
query search

The logical line end symbol also has special significance for the #CP function.
Beginning any physical line with #CP indicates that you are entering a command
that is to be processed by CP immediately. If you have set a character other than #
as your logical line end symbol, you should use that character instead of a #.

The logical line delete symbol (¢) terminals) deletes the entire previous physical
line, or the last logical line back to (and including) the previous logical line end (#).
You can use it to cancel a line containing many or serious errors. If a #
immediately precedes the ¢ sign, only the # sign is deleted, since the # indicates the
beginning of a new line, and the ¢ cancels the current line. For example:

• Logical Line Delete:

Appendix C. Considerations for Line Mode Terminals C-l

Logical Escape

ABC#DEF¢ deletes the #DEF and results in ABC
ABC#¢ results in ABC
ABC#DEF¢#GHI results in ABC#GHI
ABC#DEF¢GHI results in ABCGHI

Physical Line Delete:

ABC¢ deletes the whole line

Note: When you cancel a line by using the ¢ logical line delete symbol, you do not
need to press a carriage return; you can continue entering data on the same line.

The logical escape symbol (") causes VM/SP to consider the next character
entered to be a data character, even if it is normally one of the logical line editing
symbols (@, ¢, ", or #). For example:

ABC"¢D results in ABC¢D
""ABC"" results in "ABC"

If you enter a single logical escape symbol (") as the last character on a line, or on
a line by itself, it is ignored.

When you enter logical escape characters in conjunction with other logical editing
characters, the results may be difficult to predict. For example, the lines:

ABC""@DEF
ABC""@@DEF

both result in the line ABCDEF.

Defining Logical Line Editing Symbols

C-2 VM/SP CMS User's Guide

The logical line editing symbols are defined for each virtual machine during
VM/SP system generation. If your terminal's keyboard lacks any of these special
characters, your installation can define other special characters for logical line
editing. You can find out what logical line editing symbols are in effect for your
virtual machine by entering the command:

cp query terminal

The response might be something like:

LINEND # , LINEDEL ¢ , CHARDEL @ , ESCAPE "
LINESIZE 130, MASK OFF, APL OFF, ATTN OFF, MODE VM

You can use the CP TERMINAL command to change the logical line editing
characters for your virtual machine. For example, if you enter:

cp terminal linend /

Then, the line:

input # line / input / #

would be interpreted:

input # line
input

The terminal characteristics listed in the response to the CP QUERY TERMINAL
command are all controlled by operands of the CP TERMINAL command.

Appendix C. Considerations for Line Mode Terminals C-3

C-4 VM/SP CMS User's Guide

Appendix D. Summary of CMS Commands

Figure 0-1 on page 0-3 and Figure 0-2 on page 0-7 contain alphabetical lists of
the CMS commands and the functions performed by each. Figure 0-1 on page
0-3 lists those commands that are available for general use; Figure 0-2 on page
0-7 lists the commands used by system programmers and system support personnel
who are responsible for generating, maintaining, and updating VM/SP. Unless
otherwise noted, CMS commands are described in VM / SP CM S Command and
Macro Reference

. Code Meaning

VSE PP Indicates that this command invokes a VSE Program Product,
available from IBM for a license fee.

EREP Indicates that this command is described in VM / SP OLTSEP and
ERROR Recording Guide. Further details on the operands used by
this command are contained in OS/VS Environmental Recording
Editing and Printing (EREP) Program.

IOCP UG indicates that this command is described in the Input/Output
Configuration Program User's Guide and Reference.

IPCS Indicates that this command is a part of the Interactive Problem
Control System (IpeS) and is described in VM/370 IPCS User's
Guide.

Op Gd Indicates that this command is described in the VM / SP Operator's
Guide.

os PP Indicates that this command invokes an OS program product, available
from IBM for a license fee.

SPG Indicates that this command is described in the VM / SP System
Programmer's Guide.

PLAN Indicates that this command is described in the VM / SP Planning
Guide and Reference.

INSTALL Indicates that this command is described in the VM / SP Installation
Guide.

Appendix O. Summary of CMS Commands 0-1

D-2 VM/SP eMS User's Guide

There are ten commands called Immediate commands that are handled in a
different manner from the other commands listed in Figure D-l and Figure D-2.
They may be entered while another command is executing by pressing the
Attention key (or its equivalent) and are executed immediately.

The Immediate commands are:

HB Halt batch execution
HI Halt Interpretation
HO Halt tracing
HT Halt typing
HX Halt execution
RO Resume tracing
RT Resume typing
so Suspend tracing
TE Trace end
TS Trace start

You can define your own immediate commands by using any of the following:

the IMMCMD macro in an assembler language program

the IMMCMD command within an EXEC (CMS EXEC, EXEC 2, System
Product interpreter).

NUCXLOAD command with the IMMCMD option specified.

Command Code Usage

ACCESS Identify direct access space to a CMS virtual machine, create extensions
and relate the disk space to a logical directory.

AMSERV Invoke access method services utility functions to create, alter, list, copy,
delete, import, or export VSAM catalogs and data sets.

ASSEMBLE Assemble assembler language source code.

ASSGN Assign or unassign a CMS/DOS system or programmer logical unit for a
virtual I/O device.

CATCHECK Allows a CMS VSAM user (with or without DOS set ON) to invoke the
VSE/VSAM Catalog Check Service Aid to verify a complete catalog
structure.

CMDCALL Converts EXEC 2 extended plist function calls to CMS extended plist
command calls.

CMSBATCH Invoke the CMS batch facility.

COMPARE Compare records in CMS disk files.

CONWAIT Causes a program to wait until all pending terminal I/O is complete.

COPYFILE Copy CMS disk files according to specifications.

CP Enter CP commands from the CMS environment.

DDR Perform backup, restore, and copy operations for disks.

DEBUG Enter DEBUG subcommand environment.

DEFAULTS Set or display default options for the commands: FILELIST, NOTE,
RDRLIST, RECEIVE, PEEK, SENDFILE, and TELL.

DESBUF Clears the program stack and the terminal input buffers.

DISK Perform disk-to-card and card-to-disk operations for CMS files.

DLBL Define a VSE filename or VSAM ddl}ame and relate that name to a disk
file.

DOSLIB Delete, compact, or list information about the phases of a CMS/DOS
phase library.

DOSLKED Link-edit CMS text decks or object modules from a VSE relocatable
library and place them in executable form in a CMS/DOS phase library.

DOSPLI VSEPP Compile DOS Pb/I source code under CMS/DOS.

DROPBUF Eliminate a program stack buffer.

DSERV Display information contained in the VSE core image, relocatable, source,
procedure, and transient directories.

EDIT Invoke the VM/SP System Product editor in CMS editor (EDIT)
compatibility mode to create or modify a disk file.

ERASE Delete CMS disk files.

ESERV Display, punch or print an edited (compressed) macro from a VSE source
statement library (E sublibrary).

EXEC Execute special procedures made up of frequently used sequences of
commands.

Figure D-l (Part 1 of 4). CMS Command Summary

Appendix D. Summary of CMS Commands D-3

Command Code Usage

EXECIO Do I/O operations between a device and the program stack.

EXECOS Reset the OS and VSAM environments under CMS without returning to
the interactive environment.

EXECUPDT Produces an updated executable version of a System Product interpreter
source program.

FCOBOL VSEPP Compile DOS/VS COBOL source code under CMS/DOS.

FETCH Fetch a CMS/DOS or VSE executable phase.

FILEDEF Define an OS ddname and relate that ddname to any device supported. by
CMS.

FILELIST List information about CMS disk files, with the ability to edit and issue
commands from the list.

FINIS Close an open file.

FORMAT Prepare disks in CMS fixed block format.

GENDIRT Fill in auxiliary module directories.

GENMOD Generate nonrelocatable CMS files (MODULE files).

GLOBAL Identify specific CMS libraries to be searched for macros, copy files,
missing subroutines, LOAD LIB modules, or DOS executable phases.

GLOBALV Set, maintain, and retrieve a collection of named variables.

HELP Display information about CP, CMS, or user commands, EDIT, XEDIT, or
DEBUG subcommands, System Product interpreter, EXEC, and EXEC2
control statements, and descriptions of CMS and CP messages.

IDENTIFY Display or stack userid, nodeid, rscsid, date, time, time zone, and day of
the week.

IMMCMD Use the IMMCMD command to establish or cancel immediate commands
from within an EXEC.

INCLUDE Bring additional TEXT files into storage and establish linkages.

IOCP IOCPUG Invoke the Input/Output Configuration Program

LABELDEF Specify standard HDRl and EOFl tape label description information for
CMS, CMS/DOS, and OS simulation.

LISTDS List information about data sets and space allocation on OS, DOS, and
VSAM disks.

LISTFILE List information about CMS disk files.

LISTIO Display information concerning CMS/DOS system and programmer logical
units.

LKED Link edit a CMS TEXT file or OS object module into a CMS LOADLIB.

LOAD Bring TEXT files into storage for execution.

LOADLIB Maintain CMS LOADLIB libraries.

LOADMOD Bring a single MODULE file into storage.

MACLIB Create or modify CMS macro libraries.

MAKEBUF Create a new program stack buffer.

Figure D-l (Part 2 of 4). CMS CommandSummary

D-4 VM/SP eMS User's Gutde

Command Code Usage

MODMAP Display the load map of a MODULE file.

MOVEFILE Move data from one device to another device of the same or a different
type.

NAMEFIND Display/stack information from a NAMES file. (default 'userid NAMES').

NAMES Display a menu to create, display or modify entries in a 'userid NAMES'
file. (The menu is available only on display terminals.)

NOTE Prepare a 'note' for one or more computer users, to be sent via the
SENDFILE command.

NUCXDROP Delete specified nucleus extensions.

NUCXLOAD Load a nucleus extension.

NUCXMAP Identify existing nucleus extensions.

OPTION Change the DOS/VS COBOL compiler (FCOBOL) options that are in
effect for the current terminal session.

OSRUN Load, relocate, and execute a load module from a CMS LOADLIB or OS
module library.

PEEK Display a file that is in your virtual reader without reading it onto disk.

PRINT Spool a specified CMS file to the virtual printer.

PSERV Copy a procedure from the VSE procedure library onto a CMS disk,
display the procedure at the terminal, or spool the procedure to the virtual
punch or printer.

PUNCH Spool a copy of a CMS file to the virtual punch.

QUERY Request information about a CMS virtual machine.

RDR Generate a return code and either display or stack a message that identifies
the characteristics of the next file in your virtual reader.

RDRLIST Display information about files in your virtual reader with the ability to
issue commands from the list.

READCARD Read data from spooled card input device.

RECEIVE Read onto disk a file or note that is in your virtual reader.

RELEASE Make a disk and its directory inaccessible to a eMS virtual machine.

RENAME Change the name of a CMS file or files.

RESERVE Use the RESERVE command to allocate all available blocks of a 512-,
lK-, 2K-, or 4K-byte block formatted mini-disk to a unique CMS file.

RSERV Copy a VSE relocatable module onto a CMS disk, display it at the
terminal, or spool a copy to the virtual punch or printer.

RUN Initiate series of functions to be performed on a source, MODULE, TEXT,
or EXEC file.

SENDFILE Send files or notes to one or more computer users, attached locally or
remotely, by issuing the command or by using a menu. (display terminal
only)

SENTRIES Determine the number of lines currently in the program stack.

Figure D-l (Part 3 of 4). CMS Command Summary

Appendix D. Summary of CMS Commands D-5

Command Code Usage

SET Establish, set, or reset CMS viriual machine characteristics.

SETPRT Load a virtual 3800 printer.

SORT Arrange a specified file in ascending order according to sort fields in the
data records.

SSERV Copy a VSE source statement book onto a CMS disk, display it at the
terminal, or spool a copy to the virtual punch or printer.

START Begin execution of programs previously loaded (OS and CMS) or fetched
(CMS/DOS).

STATE Verify the existence of a CMS disk file.

STATEW Verify a file on a read/ write CMS disk.

SVCTRACE Record information about supervisor calls.

SYNONYM Invoke a table containing synonyms you have created for CMS and
user-written commands.

TAPE Perform tape-to-disk and disk-to-tape operations for CMS files, position
tapes, and display or write VOLI labels.

TAPEMAC Create CMS MACLIB libraries directly from an IEHMOVE-created
partitioned data set on tape;

TAPPDS Load OS partitioned data set (PDS) files or card image files from tape to
disk.

TELL Send a message to one or more computer users who are logged on to your
computer or to one attached to yours via RSCS.

TXTLIB Generate and modify text libraries.

TYPE Display all or part of a CMS file at the terminal.

UPDATE Make changes in a program source file as defined by control cards in a
control file.

VSAPL OSPP Invoke VS APL interface in CMS.

XEDIT Invoke the VM/SP System Product editor to create or modify a disk file.

Figure D-t (Part 4 of 4). CMS Command Summary

D-6 VM/SP eMS User's Guide

Command Code Usage

ASM3705 INSTALL Assemble 370x source code.

ASMGEND INSTALL Regenerate the VM/SP assembler command modules.

CMSGEND INSTALL Generate a new CMS disk-resident module from updated TEXT files.

CPEREP EREP Format and edit system error records for output.

DIRECT PLAN Set up VM/SP directory entries.

DOSGEN INSTALL Load and save CMSDOS and INSTVSAM shared segments.

DUMPS CAN IPCS Provide interactive analysis of CP abend dumps.

GEN3705 INSTALL Generate an EXEC file that assembles and link-edits the 370x control
program.

GENERATE INSTALL Update VM/SP or the VM/SP directory, or generate a new standalone
copy of a service program.

NCPDUMP OPGd, Process CP spool reader files created by 370x dumping operations.
SPG

PRB IPCS Update IPCS problem status.

PROB IPCS Enter a problem report in IPCS.

PROP OPGd Provide Programmable Operator capability.

SAMGEN INSTALL Load.and save the CMSBAM shared segment.

SAVENCP INSTALL, Read 370x control program load into virtual storage and save an image on
SPG a CP-owned disk.

SETKEY SPG Assign storage protect keys to storage assigned to named systems.

STAT IPCS Display the status of reported system problems.

TRAPRED OPGd Allow the data collected by CPTRAP to be displayed or printed.

VMFDOS INSTALL Create CMS files for VSE modules from VSE library distribution tape or
SYSIN tape.

VMFDUMP OPGd, Format and print system abend dumps; under IPCS, create a problem
IPCS report.

VMFLOAD INSTALL Generate a new CP, CMS, or RSCS module.

VSAMGEN INSTALL Load and save CMSVSAM and CMSAMS shared segments.

VSEVSAM INSTALL Build a VSE/VSAM maclib containing the supported VSE/VSAM macros
as well as the following VSE macros: CDLOAD, CLOSE, CLOSER,GET,
OPEN, OPENR, and PUT.

ZAP OPGd, Modify or dump LOAD LIB , TXTLIB, or MODULE files.
SPG

Figure D-2. Summary of CMS Commands for System Programmers

Appendix O. Summary of CMS Commands 0-7

D-8 VM/SP eMS User's Guide

t Appendix E. Summary of CP Commands

Figure E-1 describes the CP command privilege classes. Figure E-2 on page E-2
summarizes the CP commands and gives a brief description of each.

Class User and Function

At PriIlllllY System Operator: The class A user controls the VM/SP system .. Class A is assigned to the
user at the VM/SP system console during IPL. The primary system operator is responsible for the
availability of the VM/SP system and its communication lines and resources. In addition, the class A
user controls system accounting, broadcast messages, virtual machine performance options and other
command operands that affect the overall performance of VM/SP.

Note: The class A system operator who is automatically logged on during CP initialization is
designated as the primary system operator.

B1 System Resource Operator: The class B user controls all the real resources of the VM/SP system,
except those controlled by the primary system operator and spooling operator.

Ct System Programmer: The class C user updates certain functions of the VM/ SP system.

D1 Spooling Operator: The class D user controls spool data files and specific functions of the system's
unit record equipment.

E1 System AlIIllyst: The class E user examines and saves certain data in the VM/SP storage area.

Ft Service Representative: The class F user obtains, and examines, in detail, certain data about input and
output devices connected to the VM/SP system.

G2 General User: The class G user controls functions associated with the execution of his virtual machine.

Any2 The Any classification is given to certain CP commands that are available to any user. These are
primarily for the purpose of gaining and relinquishing access to the VM/SP system.

H Reserved for mM use.

Figure E-l. CP Privilege Class Descriptions

Described in the VM/SP Operator's Guide.

2 Described in the VM/SP CP Command Reference for General Users.

Appendix E. Summary of CP Commands E-l

Privilege
Command Class

* any

#CP any

ACNT A

ADSTOP G

ATTACH B

ATTN G

AUTOLOG A,B

BACKSPAC D

BEGIN G

CHANGE D,G

COUPLE G

CP any

CPTRAP C

DCP C,E

DEFINE G

B

DETACH B

B

B

G

G

DIAL any

DISABLE A,B

DIS CONN any

DISPLAY G

DMCP C,E

Figure E-2 contains an alphabetical list of the CP commands, the privilege classes
which may execute the command, and a brief statement about the use of each
command.

Usage

Annotate the console sheet.

Execute a CP command while remaining in the virtual machine environment.

Create accounting records for logged on users and reset accounting data,
and close the spool file that is accumulating accounting records.

Halt execution at a specific virtual machine instruction address.

Attach a real device to a virtual machine. Attach a DASD for CP control.
Dedicate all devices on a particular channel to a virtual machine.

Make an attention interruption pending for the virtual machine console.

Automatically log on a virtual machine and have it operate in disconnect
mode.

Restart or reposition the output of a unit record spooling device.

Continue or resume execution of the virtual machine at either a specific
storage location or at the address in the current PSW.

Alter one or more attributes of a closed spool file CLOSE G Terminate
spooling operations on a virtual card reader, punch, printer, or console.

Connect channel-to-channel adapters.

Execute a CP command while remaining in the CMS virtual machine
environment.

Create a file of selected trace table, CP interface, and virtual machine
interface entries for problem determination.

Display real storage at terminal.

Reconfigure your virtual machine.

Redefine the usage of SYSVIRT and VIRTUAL 3330V devices.

Disconnect a real device from a virtual machine.

Detach a DASD volume from CPo

Detach a channel from a specific user.

Detach a virtual device from a virtual machine.

Detach a channel from your virtual machine.

Connect a terminal or display device to the virtual machine's virtual
communication line.

Disable 2701/2702/2703, 370X in EP mode, and 3270 local
communication lines.

Disconnect your terminal from your virtual machine.

Display virtual storage on your terminal.

Dump the specified real storage location on your virtual printer.

Figure E-l (Part 1 of 4). CP Command Summary

E-2 VM/SP eMS User's Guide

Privilege
Command Class Usage

DRAIN D Halt operations of specified spool devices upon completion of current
operation.

DUMP G Print the following on the virtual printer: virtual PSW, general registers,
floating-point registers, storage keys, and contents of specified virtual
storage locations.

ECHO G Test terminal hardware by redisplaying data entered at the terminal.

ENABLE A,B Enable communication lines.

EXTERNAL G Simulate an external interruption for a virtual machine and return control to
that machine.

FLUSH D Cancel the current file being printed or punched on a specific real unit
record device.

FORCE A Cause logoff of a specific user.

FREE D Remove spool HOLD status.

HALT A Terminate the active channel program on specified real device.

HOLD D Defer real spooled output of a particular user.

INDICATE A,E,G Indicate resource utilization and contention.

IPL G Simulate IPL for a virtual machine.

LINK G Provide access to a specific DASD by a virtual machine.

LOADBUF D Load real UCS/UCSB or FCB printer buffers.

LOADVFCB G Load virtual forms control buffer for a virtual 3203 or 3211 printer.

LOCATE C,E Find CP control blocks.

LOCK A Bring virtual pages into real storage and lock them; thus, excluding them
from future paging.

LOGOFF any Disable access to CP.

LOGON any Provide access to CP.

MESSAGE A,B,any Transmit messages to other users.

MIGRATE A Allows the operator to migrate pages either for the entire system or just one
user.

MONITOR A,E Trace events of the real machine and record system performance data.

MSGNOH B Send a specified message, without the standard message header, from one
virtual machine to another.

NETWORK A,B Load, dump, and control the operation of the 370X control program.
Control the operation of 3270 remote devices.

NOTREADY G Simulate "not ready" for a device to a virtual machine.

ORDER D,G Rearrange closed spool files in a specific order.

PER A,B,C,D, Monitor certain events in the user's virtual machine as they occur during
E,F,G program execution.

PURGE D,G Remove closed spool file from system.

Figure E-l (Part 1 of 4). CP Command Summary

Appendix B. Slimmary of CP Commands' B-3

Privilege
Command Class Usage

QUERY A,B,C,D, Request information about machine configuration and system status.
E,F,G

QVM A Request the transition from VM/SP to the V =R virtual machine running in
,native mode.

READY G Simulate device end interruption for a virtual device.

REPEAT D Repeat (a specified number of times) printing or punching of a specific real
spool output file.

REQUEST G Make an attention interruption pending for the virtual machine console.

RESET G Clear and reset all pending interruptions for a specified virtual device and
reset all error conditions.

REWIND G Rewind (to load point) a tape and ready a tape unit.

SAVESYS E Save virtual machine storage contents, registers and PSW.

SCREEN G Control color and extended highlight attributes of the screen.

SET A,B,E,F, Operator--establish system parameters.

G User--control various functions within the virtual machine.

SHUTDOWN A Terminate all VM/SP functions and checkpoint CP system for warm start.

SLEEP any Place virtual machine in dormant state.

SMSG G Send special message to appropriate virtual machine.

SPACE D Force single spacing on printer.

SPMODE A Establish or reset the single processor mode environment.

SPOOL G Alter spooling control options; direct a file to another virtual machine or to
a remote location via the RSCS virtual machine.

SPTAPE D Dump output spool files on tape or load output spool files from tape.

START D Start spooling device after draining or changing output classes.

STCP C Change the contents of real storage.

STORE' G Alter specified virtual storage locations and registers.

SYSTEM G Simulate RESET, CLEAR STORAGE, and RESTART buttons on a real
system console.

TAG G Specify variable information to be associated with a spool file or output unit
record device. Interrogate the current TAG text setting of a given spool file
or output unit record device.

TERMINAL G Define or redefine the input and attention handling characteristics of your
virtual console.

TRACE G Trace specified virtual machine activity at your terminal, spooled printer, or
both.

TRANSFER D,G Transfer input files to or reclaim input files from a specified user's virtual
card reader.

UNLOCK A Unlock previously locked page frames.

VARY B Mark a device unavailable or available.

Figure E-2 (Part 3 of 4). CP Command Summary

E-4 YM/SP eMS User's Guide

PrivUege
Command Class Usage

VMDUMP G Dump virtual machine when issued with the VM/IPCS Extension program
product.

WARNING A,B Transmit a high priority message to a specified user or to all users.

Figure E-l (Part 4 of 4). CP Command Summary

Appendix E. Summary of CP COmniands E-S

E-6 VM/SP eMS User's Guide

I Appendix F. Sample Tenninal Sessions

This appendix provides sample terminal sessions showing you how to use:

• The CMS Editor (using context editing), and the CMS COPIFILE, SORT,
RENAME, and ERASE commands

• The eMS Editor (using line-number editing)

• CMS OS simulation to create, assemble, and execute a program using OS
macros in the eMS environment

• CMS VSE/AF simulation to create, assemble, and execute a program
using macros in the eMS/DOS environment.

• Access method services under eMS, to create VSAM catalogs and data
spaces, and to use the define and repro functions of AMSERV

Appendix F. Sample Temrin~ SessiQns F-l

Sample Terminal Session Using the CMS Editor and CMS File System Commands

This terminal session shows you how to create a CMS file and make changes to it using the
CMS Editor, and then manipulate it using the CftS file system commands, COPYFILE, ERASE,
RENAME, and SORT.

~: Throughout this terminal session whenever a TYPE subcommand or command is issued
that results in a display of the entire file, the complete display is not shown; omitted
lines are indica ted by vertical ellipses (••.•) • When you enter the TYPE command or
subcommand, you should see the entire display.

1 edit command data
NEW FILE:
EDIT:

2 image
ON
tabs 1 12 80
trunc 72

3 input
INPUT:
copyfile copy cms files
sort sort cms files in alphameric order by specific columns
edit create a cms file
edit modify a ems file
rename change the name of a cms file
punch punch a copy of a ems file On cards
print print a cms file
erase erase a ems file
listfile list information on a cms file
state verify the existence of a cms file
statew verify the existence of a cms file on a read/write disk
readcard read a cms file from your card reader onto disk
disk dump punch a ems file in cms disk dump format into your virtual card punch for

4 TRUNCATED

5

DISK DUMP PUNCH A CftS FILE IN CftS DISK DUftP FORMAT INTO YOUR VIRTUAL CA
disk load read a disk dump file onto disk
compare compare the contents of cms disk files
tape dump dump cms files onto tape
tape load read cms files onto disk from tape

EDIT:

1 Use the EDIT command to invoke the CMS Editor to create a file with a filename of
COMftAND and a filetype of DATA. Since the file does not exist, the editor issues
the message NEW FILE.

2 Check that the image setting is ON. This is the default for all filetypes except
SCRIPT. Then, set the logical tab stops for this file at 1, 12, and 80, and set a
truncation limit of 72.

3 Enter the subcommand INPUT to enter input mode and begin entering lines in the file.
For these input files, you should press the Tab key (or equivalent) on your terminal
following each CMS command name. If there is a physical tab stop on your terminal
in column 12, the input data appears aligned.

4 The message, TRUNCATED, indicates that the line you just entered exceeded the
truncation limit you set for the file (column 72). The editor displays the line, so
you can see how much of the line was accepted. Your virtual machine is still in
input mode, so continue entering input lines.

5 To get out of input mode, enter a null line (press the Return or Enter key without
entering any data). The editor responds with the message EDIT:.

F;..2 VM/SP CMSUser'sGuide

top
TOF:
type *
TOF:
COPYFILE COpy CMS FILES

TAPE LOAD READ CMS FILES ONTO DISK FROM TAPE
EOF:
locate /disk dump
DISK DUMP PUNCH A eMS FILE IN CMS DISK DUMP FORMAT INTO YOUR VIRTUAL CA
replace disk dump punch a ems file onto cards

10

input
INPUT:
ty-pe
rename
sort
copyfile
comprae

EDIT:

display the contents of a ems file at
alter the name of a cms file
resequence the records in a cms file
reformat a file, by columns
verify that two files are identical

change /rae/are/
COMPARE VERIFY THAT TWO FILES ARE IDENTICAL

11 bo

12

TAPE LOAD READ CMS FILES ONTO DISK FROM TAPE
input
INPUT:

EDIT:
13 file

R;

your terminal

6 Use the TOP subcommand to position the current line pointer at the top of the file.
The editor responds TOF:.

7 Use the TYPE subcommand to display the entire file. Note that all of your input
lines are translated to uppercase characters, and that the tab characters you
entered have been expanded, so that the first word following each command name
begins in column 12.

8 The message EOF: indicates that the end of the file is reached. You can issue the
LOCATE subcommand to locate a line. Since you are at the bottom of the file, the
editor begins searching from the top of the file. Notice that you can enter the
character string you want to locate in lowercase characters; the editor translates
it to uppercase to locate the line. The editor displays the line.

9 Use the REPLACE subcommand to replace this line, in a shortened form so that it is
not truncated. Remember to enter a tab character after the comman~ name; when you
enter the line, the tab stop does not have to be in column 12. Then, use the 'INPUT
subcommand again to resume entering input. The lines that you enter next are written
into the file following the DISK DUMP line.

10 When you make a spelling error or other mistake, you may want to correct it
immediately. Enter a null line to return to edit mode, and use the CHANGE subcommand
to correct the error. In this example, the string RAE is changed to ARE. The
editor displays the line as changed.

11 Use the BOTTOM subcommand to move the current line pointer to point ~ the last line
in the file. Enter input mode with the INPUT subcommand.

12 ,If you enter input mode and decide that you do not want to enter input lines, all
you have to do to return to edit mode is enter a null line.

13 To write the file onto disk, use the FILE subcommand. This writes it onto disk
using the name with which you invoked the editor, COMMAND DATA. The CMS ready
message indicates that you are in the eMS command environment.

Appendix F. Sample Terminal Sessions F-3

14 type command data

COPJFILE COpy CMS FILES
SORT SORT CMS FILES IN ALPHAMERIC ORDER BY SPECIFIC COLUMNS

TAPE LOAD READ CMS FILES ONTO DISK FROM TAPE
R;

15 edit command data
EDIT:

16

save
EDIT:

17 fname comm2
file
R;

18 copyfLle comm2 data a (lowcase
R;

19 copyfile command data a comm2 data a (ovly specs
DMSCPY601R ENTER SPECIFICATION LIST:
1-12 1
R;

20 type comm2 data

21

COPYFILE
SORT
EDIT
EDIT
RENAME
PUNCH
PRINT
ERASE
LISTFILE
ht
R;

Copy cms files
Sort cms files in alphameric order by specific columns
create a cms file
Modify a ems file
Change the name of a ems file
Punch a eopy of a cms file on cards
print a cms file
Erase a ems file
List information on a cms file

14 To display the entire file at your terminal, use the CMS TYPE command. Note any
errors that you made that you might want to correct.

15 Use the EDIT command to edit the file COMMAND DATA again. This time, since the file
exists, the editor does not issue the message, NEW FILE:

16 While you are in edit mode, make any changes that you need to; then issue the SAVE
subcommand to save these changes, and replace the existing copy of the file onto
disk.

17 Use the FNAME subcommand to change the filename of the file to COMM2 (the filetype
remains unchanged). When you issue the FILE subcommand this time, the file is
written onto disk with the name COMM2 DATA.

18 You can rewrite the entire file, COMM2 DATA in lowercase characters, using the
COPYFILE command with the LOWCASE option.

19 The file COMM2 DATA is now all lowercase characters (you can display the file with
the TYPE command if you want to verify it). However, the command names, and the
first character of the description should be uppercase characters. You can use the
COPYFILE command again, to overlay the original uppercase characters of COMMAND DATA
in columns 1 through 12 over the lowercase characters in columns 1 through 12 of
COMM2 DATA.

20 Use the TYPE command tQverify that the COPY FILE command did, in fact, overlay only
the columns that you wanted.

21 The HT Immediate command suppr~~ses the ~isplay of the remainder of the file; you
can see from the first few lines that the format of the file is correct.

F-4 V'M/SPCMS User's Guide

2 listfile * data
COr1MAND DATA
COMM2 DATA
R;

A1
A1

3 sort comm2 data a command sort a
DMSSRT604R ENTER SORT FIELDS:
1 9
R;

4 type command sort

COMPARE
COMPARE

Verify that two files are identical
Compare the contents of cms disk files

TYPE Display the contents of a cms file at your terminal

R;
5 copyfile comm2 data a function data a (specs

DMSCPY601R ENTER SPECIFICATION LIST:
12-72 1 1-9 70
R;

6 type function data

Copy cms files
Sort cms files in alphameric order by specific columns

Read cms files onto disk from tape
R;

~7 sort function data a functicn sort a
DMSSRT604R ENTER SORT FIELDS:
1 70
R;
type function sort
Alter the name of a cms file
Change the name of a cms file

Verify the existence of a cms file on a read/write disk
R;

COPYFILE
SORT

TAPE LOAD

RENAME
RENAME

STATEW

22 The LISTFILE command lists your two files with the. filetype of DATA. . (If you
previously had files with these filetypes, they are alsol~sted.)

23 To sort the file CCMM2 DATA into alphabetic order, by command, issue the SORT
command. When you are prompted for the sort fields, enter the columns that contain
the command names, 1 through 9.

24 The output file from the SORT command is named COMMAND SORT. You can use the TYPE
command to verify that the records are now sorted alphabetically by command.

25 To create another copy of the file, this time with the command names on the right
and the functional description on the left, use the COpy FILE command w~th the SPECS
option again. To create a file this way, you must know the columns in your input
file (COMM2 DATA) and how you want them arranged in your output file {FUNCTION
DATA}. Columns 1 through 9 contain the command names; columns 12 through 72 contain
the descriptions. The specification list entered after the prompting message
indicates that columns 12 through 72 should be copied and placed beginning in column
1, and that columns 1 through 9 should be copied beginning in column 70.

26 Verify the COPYFILE operation with the TYPE command.
27 Sort the file FUNCTION DATA so that the functional descriptions appear in alphabetic

order. You may also want to display the output file, FUNCTION SORT.

Appendix F. Sample Terminal Sessions F-5

28 listfile
COftMAND DATA A1
COftM2 DATA A1
COMMAND SORT A1
FUNCTION DATA A1
FUNCTION SORT A1
R;

29 erase command data
R;

30 rename comm2 data a command data a
R;
listfile
FILENAME
FUNCTION
COMftAND
COMMAND
FUNCTION
R;

* * a (label
FILETYPE FM
SORT A1
DATA A1
SORT A1
DATA A1

31 edit function sort
EDIT:

32 zone
1 80

zone 60
33 change / // *

FORMAT
F
F
F
F

Alter the name of a cms file
Change the name of a c~s file

LRECL
80
80
80
80

RECS
22
22
22
22

BLOCKS
3
3
3
3

DATE
10/13/75
10/13/75
10/13/75
10/13/75

Verify the existence of a· cms file on a read/write disk
EOF:

34

35

top
'rOF:
find List
NOT FOUND
EOF:
case

U
case m
find List
List information on a cms file

TIME
7:52:03
7:48:52
7:48:15
7:51:37

LABEL
ABC191
ABC191
ABC 191
ABC191

RENAME
RENAME

STATEW

LISTFILE

28 If these are the only files on your A-disk, the LISTFILE command entered with no
operands produces a list of the files created so far.

29 The file COMM2 was created for a workfile, in case any errors might have happened.
Since you no longer need the original file, COMMAND DATA, you can erase it.

30 Use the RENAME command to rename the workfile COMM2 DATA to have the name COMMAND
DATA. The LISTFILE command verifies the change.

31 To begin altering the file FUNCTION SORT, invoke the editor again.
32 The ZONE command requests a display of the current zone settings, which are columns

1 and 80. When you issue the command ZONE 60, it changes the settings to columns 60
and 80, so that you cannot modify data in columns 1 through 59.

33 The CHANGE subcommand requests that the first appearance o£ five consecutive blanks
on each line in the file be compressed. The editor displays the results of this
CHANG& request by displaying each line changed (which is each line in the file). The
net effect is to shift the command column 5 spaces to the left.

34 Position the current line pointer at the top of the file, and then issue a FIND
subcommand to move the line pointer to the line that begins with "List".

35 The editor indicates that the line is not found. Checking the current setting for
the CASE subcommand, you can see that it is 0, or uppercase, which indicates that
the editor is translating your input data to uppercase. You can issue the CASE M
subcommand to change this setting, then reissue the FIND subcommand.

F .. ·6 YM/SP eMS User's Guide

36 change Ion a cms/about a CMS
NOT FOUND

37

38

= zone 1 *
List information about a CMS file
top
TOF:
change /cms/CMS/ *
Alter the name of a CMS file
Change the name of a CMS file

Verify the existence of a CMS file on a read/write disk
EOF:

39 save

40

41

42

43

44

EDIT:
top
TOF:
next
Alter the name of a CMS file
$dup
Alter the name of a CMS file
change /name/filetype/
Alter the filetype of a CMS file
next
Change the name of a CMS file
change /name/filename/
Change the filename of a CMS file
next
Compare the contents of CMS disk files
next
Copy CMS files
find M
Modify a eMS file
up
List information about a CMS file
i Make a copy of a CMS disk file
top
TOF:

LISTFILE

RENAME
RENAME

STATEW

RENAME

RENAME

RENAME

RENAME

RENAME

COMPARE

COpy FILE

EDIT

LISTFILE
COPYFILE

36 The editor locates the line and displays it. You want to change the character string
"on a cms" to "about a CMS". The editor does not find the string you specify because
the zone setting for columns 60 through 80 is still in effect. You can enter the
ZONE subcommand, and reissue the CHANGE subcommand, or you can enter the = (REUSE)
subcommand to stack the CHANGE subcommand, and enter the ZONE subcommand to execute
first.

37 The ZONE subcommand is executed, then the CHANGE subcommand. The editor displays the
changed line.

38 At the top of the file, enter another global change request, to change lowercase
occurrences of the string cms to uppercase. The editor displays each line changed.

39 When the EOF: message indicates that the end of the file is reached, you can save
the changes made during this edit session with the SAVE subcommand before
continuing.

40 Move the current line pointer to point to the first line in the file. You want to
add an entry that is'similar; use the SDUP edit macro to duplicate the line, then
change the copy that you made of the line.

41 You can change the word name to filename in the next line also.
42 You can scan a file, a line at a time, by issuing successive NEXT subcommands.
43 To insert a line beginning with the character 11, and to maintain alphabetic

sequencing, use the FIND subcommand to find the first line beginning with an M. The
line to be inserted begins with the characters MA, so you want to move the line
pointer up.

44 You can insert a single line into a file with the INPUT subcommand. Here, the INPUT
subcommand is truncated to I, so that when you space over to write the command name
in the right column, you can align it (yeu only have to allow for the two character
spaces use by "i "

Appendix F. Sample Terminal Sessions F-7

45

46

47

/COPYFILE
Copy C[IIIS files
n
Create a CMS file
n
Display the contents of a CMS file at your terminal
n
Dump CMS files onto tape
11

Erase a CMS file
up 3
create a CMS file
i Delete a file from a CMS disk
file
R;

48 type function sort a

49

50

Alter the name of a CMS file
Alter the filetype of a CMS file
Change the filename of a CMS file

Verify the existence of a CMS file on a read/write disk

R;
edit function sort
zone 58
change I // * *
Alter the name of a CMS file
Alter the filetype of a CMS file
Change the filename of a CMS file

Verify the existence of a CMS file on a read/write disk
EOF:
top
TOF:
change //1 / *
Alter the name of a CMS file
Alter the filetype of a CMS file
Change the filename of a CMS file

RENAME
RENAME
RENAME

STATEW

COPY FILE

EDIT

TYPE

TAPE DUMP

ERASE

EDIT
ERASE

RENAME
RENAME
RENAME

STATEW

RENAME
RENAME
RENAME

Verify the existence of a CMS file on a read/write disk I STATEW
EOF:

45 Move the line pointer to the top of the file and begin ~canning again. A diagonal
(/) is interpreted as a LOCATE subcommand.

46 The NEXT subcommand can be truncated to "N".
47 In front of the line beginning "Display", insert a line beginning with "Delete". If

you want to make any other modifications, do so. Otherwise, write this file onto
disk with the FILE subcommand.

48 Verify your changes.
49 Edit the file again. To compress unnecessary spaces in right hand columns, change

the zone setting. This time, issue a CHANGE subcommand that will delete all blank
sp~ces occuring 'after column 58. Since some changes you made to the file might have
spoiled the alignment in the command column, this CHANGE subcommand should realign
all of the columns.

50 Return the current line pointer to the top of the file. Change a null string to the
string "I " for all lines in the file; since the left zone is still column 58, the
characters are inserted in columns 58 and 59.

F-8 VM/SP eMS User's Guide

51

52

53
54

zone 1 *
top
TOF:
c //1 / *
I Alter the name of a CMS file
I Alter the filetype of a C~S file
I Change the filename of a CMS file

.
I verify the existence of a CMS file on a read/write disk
EOF:
top
TOF:
next
I Alter the name of a CMS file
tabset 72
repeat *
overlay I
I Alter the name of a CMS file
I Alter the filetype of a CMS file
I Change the filename of a CMS file
I Compare the contents of CMS disk files

I Verify the existence of a CMS file on a
EOF:
bottom
I Verify the existence of a CMS file on a
input
zone 1 72
c / /-1 1 *

read/write disk

read/write disk

RENAME
RENAME
RENAME

I STATEW

I RENAME

I

RENAME
RENAME
RENAME
COMPARE

STATEW

STATEW

top
TOF:

55 input
c / 1-/ 1 *

56 file

51

52

53

54

55
56,

R;
print function sort
R;

Change the left zone setting to column 1 and let the right zone be equal to the
record length; issue the CHANGE subcommand to insert the "I II in columns 1 and 2.
CHANGE can be abbreviated as "CA.
At the top of the file, change the TABSET subcommand setting to 72. This makes
column 72 the left margin. The REPEAT * subcommand, followed by the OVERLAY
subcommand, indicates that all the lines in the file are to be overlaid with a I in
the leftmost column (column 72).
When you enter this INPUT subcommand, enter a number of blank spaces following it;
this places a blank line in the file.
Reset the ZONE setting to columns 1 and 72. The CHANGE subcommand indicates that all
blanks on this line should be changed to hyphens (-). Only the blanks within the
specified zone are changed.
Insert another blank line at the top of the file and change it to hyphens.
Write the file onto disk and use the CMS PRINT command to spool a copy to the
offline printer.

Appendix F. Sample Terminal Sessions F-9

Sample Terminal Session Using Line-Number Editing

This terminal session shows how a terminal session using right-handed line-number editing
might appear on a typewriter terminal. The commands function the same way on a display
terminal, but the display is somewhat different. When you enter these input lines, you
should have physical tab stops set at your terminal at positions 16 and 22 (for assembler
columns 10 and 16; the difference compensates for the line numbers, as you will see). On
a display terminal, tab settings have no significance; once the line is in the output
display area, it has the proper number of sFaces.

1

2

3

4

s

6

7

edit test assemble
NEW FILE:
EDIT:
linemode right
input
INPUT:
00010 * sample of linemode right
00020 test csect
00030 balr 12,0
00040 using *,12
00050 st 14,sav14
00060 wrterm testing •••
00070
00080
00090
00100

EDIT:
60

I
br
end

00060 WRTERM

14,sa v14
14

c /testing ••• /·testing ••• •
00060 WRTERM
80
00080 BR 14
input
INPUT:

TESTING •••

'TESTING ••• '

1 Use the EDIT command to invoke the CMS Editor. Since this is a new file, the editor
issues the NEW FILE message.

2 Issue the LINEMODE subcommand to indicate that you want to begin line-number
editing. For ASSEMBLE files, you cannot have line numbers on the left, because the
assembler expects data in columns 1 through 7.

3 As soon as you issue the INPUT subcommand, the editor begins prompting you to enter
input lines. For convenience in entering lines, the line numbers appear on the left,
as they would if you were using left-handed line-number editing. In your ASSEMBLE
file, however, the line numbers are actually on the right.

4 When you are have finished entering these input lines, enter a null line to return
to edit mode from input mode.

S To locate lines when you are using line-number editing, you can enter the line
number of the line. In this case, enter 60 to position the current line pointer at
the line numbered 00060. ~he editor displays the line.

6 Issue the CHANGE subcommand to place quotation marks around the text line for the
WRTERMmacro. The editor redisplays the line, with the change.

7 Issue the nnnnn subcommand, specifying line number 80, and use the INPUT subcommand
so you can begin entering more input lines.

F-IO VM/SP eMS User's Guide

8 00083 sav14 ds f
00085 wkarea ds 3d
00087 flag ds x
00088 runon egu x'80'
00089 runoff egu x'qO'

9 RENUMBER LINES
EDIT:
linemode off
serial abc
save

10 EDIT:
11 linemode right

type
00130 RUNOFF EQU X'40'

12 verify 1 * type
00130 RUNOFF EQU X' 40' ABC00130

13 135 runmix egu x'20'
14 50

00050 ST 14,SAV14 ABCOO050
input
INPUT:
00053 tm flag,runon
00055 bcr 1,14
00051

15 EDIT:
top
TOF:
next
* SAMPLE OF LINEMODE RIGHT ABCOO010

16 restore

8 When you begin entering input lines between two existing lines, the editor uses an
algorithm to assign line numbers.

9 The editor ran out of line numbers, since the next line in the file is already
numbered 90. You must renumber the lines. Before you can renumber the lines, you
must turn line-number editing off. Before issuing the SAVE subcommand, which writes
the file and its new line numbers onto disk, you can issue the SERIAL subcommand.
SERIAL ABC indicates that you want the characters ABC to appear as the first three
characters of each serial number.

10 The EDIT message indicates that the SAVE request has completed.
11 Issue the LINEMODE subcommand to restore line-number editing. Use the TYPE

subcommand to verify the position of the current line pointer.
12 If you want to see the serial numbers in columns 12 through 80, issue the VERIFY

subcommand, specifying *, or the record length. Normally, the editor does not
display the columns containing serial numbers while you are editing.

13 You can use the nnnnn subcommand to insert individual lines of text. This subcommand
inserts a line that 'you want numbered 135, and places it in its proper position in
the file. Note that althougb, in this example, the current line pointer is
positioned at line 130, it does not need to be at the proper place in the file. When
the subcommand is complete, however, the current line pointer is positioned
following the line just inserted.

14 Position the line pointer at the line numbered 50, and again begin entering the
input lines indicated.

15 Enter a null line to return to edit mode, move the current line pointer to the top
of the file, and display the first line.

16 The RESTORE subcommand restores the default settings of the editor, and the the
verification columns are restored to 1 and 72, so that line numbers are not
displayed in columns 12 through 80.

Appendix F. Sample Terminal

17 type *
* SAMPLE OF LINEMODE RIGHT
TEST CSECT

BALR 12,0
USING *,12
ST 14,SAV14
TM FLAG,RUNON
BCR 1,14
WRTERM ·'IESTING ••• •
L 14,SAV14
BR 14

SAV14 DS F
WKAREA DS 3D
FLAG DS X
RUNON EQU X'SO'
RUNOFF EQU X'40'
RUNMIX EQU X'20'

END
EOF:
linemode right
file

18 RESERIALIZATION SUPPRESSED
R;

19 type test assemble

* SAMPLE OF LINEMODE RIGHT ABCOO010
,TEST CSECT ABCOO020

BALR 12,0 ABCOO030
USING *,12 ABCOO040
ST 14,SAV14 ABCOO050
TM FLAG,RUNON 00053
BCR 1,14 00055
WRTERM "!'ESTING ••• • ABCOO060
L 14,SAV14 ABCOO070
BR 14 ABCOOOSO

SAV14 DS F ABCOO090
WKAREA DS 3D ABC00100
FLAG DS X ABCOO110
RUNON EQU X'SO' ABCOO120
RUNOFF EQU X'40' ABC00130
RUNMIX EQU X'20' 00135

END ABCOO140

17 Use the TYPE subcommand to display the file.
1S When you issue the FILE subcommand to write the file onto disk, the editor issues

the message RESERIALIZATION SUPPRESSED to indicate that it is not going to update
'the line numbers, so that the current line numbers match the line numbers as they
,existed when the SAVE subcommand was issued.

19 If you want to see how the file exists on disk, use the CMS TYPE command to display
the file. Note that the lines inserted after the SAVE subcommand do not have the
initial ABC characters, and that they retain the line numbers they had when they
were inserted.

F-12 VM/SP eMS User's Guide

Sample Terminal Session For as Programmers

The following terminal session shows how you might create an assembler language program
in CMS, assemble it, correct assembler errors, and execute it. All the lines that appear
in lowercase are lines that you should enter at the terminal. Uppercase data represents
the system response that you should receive when you enter the command.

The input data lines in the example are aligned in the proper columns for the
assembler; if you are using a typewriter terminal, you should set your terminal's tab
stops at columns 10, 16, 31, 36, 41, and 46, and use the Tab key when you want to enter
text in these columns. If you are using a display terminal, when you use a PF key defined
as a tab, or some input character, the line image is expanded as it is placed in the
screen output area.

There are some errors in the terminal session, so that you can see how to correct
errors in CMS.

1 edit ostest assemble
NEW FILE:
EDIT:
input
INPUT:
dataproc csect

print nogen
space

rO egu 0
r1 equ 1
r2 equ 2
r10 equ 10
r12 equ 12
r13 equ 13
r14 egu 14
r15 egu 15

space
stm r14,r12,12(r13) save caller's regs
balr r12,O establish
using *,r12 addressability
st r13,savearea+4 store addr of caller's savearea
la r15,savearea get the address of my savearea
st r15,8(r13) store addr in caller's savearea
lr r13,r15 save addr of my savearea
space

*open files and check that they opened okay
space
la
open
using
la
tm
bnz
la
b

checkout la

process

tm
bnz
la
b
space
egu
get

r3,O initially set return code
(indata,outdata,(output» open files
ihadcb,r10 get dsect to check files
r10,indata prepare to check output file
dcboflgs,x'10' everything ok?
checkout ••• continue
r3,100 set return code
exit ••• exit
r10,outdata check output file
dcboflgs,x'10' is it okay?
process
r3,200 set return code
exit

* in data read a record from input file

1 The EDIT command is issued to create a file named OSTEST ASSEMBLE. Since the file
does not exist, the editor indicates that it is a new file and you can use the INPUT
subcommand to enter input mode and begin entering the input lines.

Appendix F. Sample Terminal Sessions F-13

2

exit

lr
put
b
space
egu
close
1
lr
1
1m
br
space

savearea dc
indata dcb

EDIT:
$mark

3 savetinput

4

EDIT:
INPUT:

outdata dcb
dcbd
space
end

EDIT:
file
R;

r2,r1
outdata, (2)
process

*

save address of record
move it to output
continue until end-of~file

(indata, ,outdata) close files
r13,savearea+4 addr of caller's save area
r15,r3 load return code
r14,12(r13) get return address
rO,r12,20(r13) restore regs
r14 bye •••

18f'0'
ddname=indd,macrf=gl,dsorg=ps,recfm=f,lrecl=80,

eodad=exit
ddname=outdd,macrf=pm,dsorg=ps

5 global maclib os macro
R;

6 assemble ostest

*
*
*
*
*
*
*

2 Since the DeB macro statement takes up more than one line, you have to enter a
continuation character in column 7& •• To do this, you can enter a null line to
return to edit mode and execute the $~ARK edit macro, which places an asterisk in
column 7&.. If the $~ARK Edit macro is not on your system, you will have to enter a
continuation character some other way. (See "Entering a Continuation Character in
Column 72" in "Section 5. The Editors.")

3 Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write
what has already been written onto disk. The CP logical line end symbol (')
separates the SAVE and INPUT subcommands.

4 A null line returns you to edit mode. You may wish, at this point, to proofread
your input file before issuing the FILE subcommand to write the ASSEMBLE file onto
disk.

5 Since this assembler program uses OS macros, you must issue the GLOBAL command to
identify the eMS macro library, OSMACRO MICLIB, before you can invoke the assembler.

6 The ASSEMBLE command invokes the VM/SP assembler to assemble the source file; the
asterisks (*) indicate the CMS blip character, which you mayor may not have mad~
active for your virtual machine.

F-14 VM/SP eMS User's Guide

7 ASSEMBLER DONE
OST00230 23 LA R3,O INITIALLY SET RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
OST00240 24 OPEN (INDATA,OUTDATA, (OUTPUT» OPEN FILES

4000000 27+ 12,*** IHB002 INVALID OPTION OPERAND SPECIFIED-OUTDATA
IF0197 *** MNOTE ***
OST00290 32 LA R3,100 SET RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
OST00340 37 LA R3,200 SET RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
OST00460 63 LR R15,R3 LOAD RETURN CODE
IF0188 R3 IS AN UNDEFINED SYMBOL
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = 5
R (00012) ;

8 edit ostest assemble
locate /r2
R2 EQU 2
i r3 equ 3
/open

c /,/,,1

9 file
R;

OPEN (INDATA,OU'IDATA, (OUTPUT»

OPEN (INDATA"OUTDA'IA, (OUTPUT»

assemble ostest

*
*
*
*
*
*

10 ASSEMBLER DONE
NO STATEMENTS FLAGGED IN THIS ASSEMBLY
R;

11 filedef indd disk test data a
R;

12 filedef outdd punch
R;

13 #cp spool punch to *
14 load ostest

OPEN FILES

OPEN FILES

7 The assembler displays errors encountered during assembly. Depending on how
accurately you copied the Frogram in this sample session, you mayor may not receive
some of these messages; you may also have received additional messages.

8 You must edit the file OS'IEST ASSEMBLE and correct any errors in it. The errors
placed in the example included a missing comma on the OPEN macro, and the omission
of an EQU statement for a general register. These changes are made as shown. The
CMS Editor accepts a diagonal (I) as a LOCATE subcommand.

9 After all the changes have been made to the ASSEMBLE file, you can issue the FILE
subcommand to replace the existing copy on disk, and then reassemble it.

10 This time, the assembler completes without encountering any errors. If your
ASSEMBLE file still has errors, you should use the editor to correct them.

11 The FILEDEF command is used to define the input and output files used in this
program. The ddnames iNDD and OUTDD, defined in the DCBs in the program, must have a
file definition in CMS. To execute this program, you should have a file on your
A-disk name TEST DATA, which must have fixed-length, 80-character records. If you
have no such file, you can make a copy of your ASSEMBLE file as follows:

copyfile ostest assemble a test data a
12 The output file is defined as a punch file, so that it will be written to your

virtual card punch.
13 The CP SPOOL command is issued, using the ICP function, to spool your virtual punch

to your virtual card reader. When you use the iCP function, you do not receive a
Ready message.

111 The LOAD command loads the TEXT file produced by the assembly into virtual storage.
The START command begins program execution.

Appendix F. Sample Terminal Sessions F-15

F;
start
DMSLI0740I EXECUTION BEGINS •••

15 DMSSOP036E OPEN EFROR CODE '04' ON 'OUTDD '
F (00200) ;

16 filedef
INDD DISK ~EST DATA A1
OUTDD PUNCH
R;

17 filedef outdd punch (lrecl 80 recfm f
R;

18 #cp query reader all
NO RDR FILES

19 load ostest (start
DMSLI07401 EXECUTION BEGINS •••

20 PUN FILE 6198 TO BILBO COpy 01 NOHOLD
R;

21 fi indd reader
F;
fi outdd disk new osfile a4 (recfm fb block 1600 lrecl 80
R;

22 listfile new osfile a4 (label
DMSLST002E FILE NOT FOUND.
R (00028) ;

23 run ostest

24

EXECUTION BEGINS •••

* R;
listfile new osfile a4 (label
FILENAME FILETYPE FM FORMAT LRECL
NEW OSFILE A4 F 1600
R;

RECS BLOCKS DATE
5 10 9/30/75

TIME LABEL
8:26:14 PAT198

15 An open error is encountered during program execution. The CMS ready message
indicates a return code of 200, which is the value placed in it by your program.

16 The FILEDEF command, with no operands, results in a display of the current file
definitions in effect.

17 Error code 4 on an open reguest means that no RECFM or LRECL information is
available. An examination of the program listing would reveal that the DCB for
OUTDD does not contain any informatiou about the file format; you must supply it on
the FILEDEF command. Be-enter the FILEDEF command.

18 You can use the CP QUERY command to determine whether there are any files in your
card reader. It should be empty; if not, determine whether they might be files you
need, and if so, read them into your virtual machine; otherwise, purge them.

19 Use the LOAD command to execute the program again; this time, use the START option
of the LOAD command to begin the program execution.

20 The PUN FILE message indicates that a file has been transferred to your virtual card
reader. The ready message indicates that your program executed successfully.

21 For the next execution of this program, you are going to read the file back out of
your card reader and create a new CMS disk file, in OS simulated data set format.
FI is an acceptable system truncation for the command name, FILEDEF.

22 The LISTFILE command is issued to check that the file NEW OSFILE does not exist.
23 The RUN command (which is an Exlc procedure) is used instead of the LOAD and START

commands, to load and execute the program. The ready message indicates that the
program completed execution.

24 The LISTFILE command is issued again, and the file NEW OSFILE is listed. (If you
issue another CP QUERY READER command, you will also see that the file is no longer
in your card reader.)

F-16 VM/SP eMS User's Guide

Sample Terminal Session for DOS Programmers

The following terminal session shows how you might create an assembler language program
in CMS, assemble it, correct assembler errors, and execute it. All the lines that appear
in lowercase are lines that you should enter at the terminal. Uppercase data represents
the system response that you should receive when you enter the command.

The input data lines in the example are aligned in the proper columns for the
assembler; if you are using a typewriter terminal, you should set your terminal's tab
stops at columns 10, 16, 31, 36, 41, and 46 and use the Tab key when you want to enter
text in these columns. If you are using a display terminal, when you use a PF key or an
input character defined as a tab, the line image is expanded as it is placed in the
screen output area.

Note: The assembler, in CMS, cannot read macros from VSE/AF libraries. This sample
terminal session shows how to copy macros from VSE/AF libraries and create CMS MACLIB
files. Ordinarily, the macros you need should already be available in a system MACLIB
file. You do not have to create a MACLIB each time you want to assemble a program.

There are some errors in the terminal session, so that you can see how to correct
errors in CMS.
1 cp link dosres 130 130 rr linkdos

DASD 130 LINKED R/O
R;
access 130 z
Z (130) R/O - DOS
R;

2 set dos on z
R;

3 edit dostest assemble
NEW FILE:
EDIT:
input
INPUT:
begpgm csect

balr 12,0
using *,12
la 13,savearea
open infile,outfile

loop get infile
put outfile
b loop

eodad equ *
close infile,outfile
eoj
eject

buffer dc CL80' ,
infile dtfdi modname=shrmod,ioarea1=buffer,devaddr=sysipt,

4
EDIT:

1 Use the CP LINK command to link to the DOS system residence volume and the ACCESS
command to access it. In this example, the system residence is at virtual address
130 and-is accessed as the Z-disk.

2 Enter the CMS/DOS enVironment, specifying the mode letter at which the DOS/VS
(VSE/AF) . system residence is aCCEssed.

3 Use the EDIT command to create a file named DOSTEST ASSEMBLE. Since the file does
not exist, the editor indicates that it is a new file and you can use the INPUT
subcommand to enter input mode and begin entering the input lines.

4 Since the DTFDI macro statement takes up more than one line, you have to enter a
continuation character in column 72. To do this, you can enter a null line to return
to edit mode and execute the $MARK edit macro, which places an asterisk in column
72. If the $MARK edit macro is not on your system, you will have to enter a
continuation character some other way. (See "Entering a Continuation Character in
Column 12" in "Section 5. The Editors.")

Appendix F _ Sample Terminal Sessions F-17

$mark
5 save#input

6

7

EDIT:
INPUT:

eofaddr=eodad,recsize=80
outfile dtfdi modname=shrmod,ioarea1=buffer,devaddr=syspch,

EDIT:
$mark
save#input
EDIT:
INPUT:

shrmod
endpgm

EDIT:
file
R;

recsize=81
dimod typefle=output
egu *
end

8 edit getmacs eserv
NEW FILE:
EDIT:
tabs 2 72
input
INPUT:

9 punch open,close,get,put,dimod,dtfdi

EDIT:
file
R;

10 assgn sysipt a
R;
eserv getmacs
R;

5 Before continuing to enter input lines, the EDIT subcommand SAVE is issued to write
what has already been written onto disk. The CP logical line end symbol (#)
separates the SAVE and INPUT subcommands.

6 Another continuation character is needed.
7 A null l~ne returns you to edit mode~ You may want, at this point, to proofread your

input file before issuing the FILE subcommand to write the ASSEMBLE file on disk.
8 To obtain the macros you need to assemble this file, use the editor to create an

ESERV file. By setting the logical tabs at columns 2 and 72, you can protect
yourself from entering data in column 1.

9 PUNCH is an ESERV program dontrol statement that copies and de-edits macros fr~m
source s.tatement lil;>raries; in this case, the syste.m source statement library. The
output is directed to the SYSPCH device, which the eMS/DOS ESERV EXEC assigns by
default to your A-disk~

10 You must assign the logica 1 unit SYSIPT before you invoke the .ESERV command. GETMACS
is the filename of the ESERV file containing the ESERV control statements.

~ F-18 VM!SP eMS User's Guide

11 listfile getmacs *
GETMACS ESERV A1
GETMACS MACRO A1
GETMACS LISTING A1
Ri

12 maclib gen dosmac getmacs
H;
erase getmacs *
E;

13 global maclib dosmac
R;

14 assemble dostest

15

16

*
*

ASSEMBLER DONE
DOS00040 4 LA 13,SAVEAREA
IF0188 SAVEAREA IS AN UNDEFINED SYMBOL
DOS00110 35 EOJ
IF0078 UNDEFINED OP CODE
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY =
E (00008) i
edit dotest assemble
EDIT:
locate /buffer/
BUFFER DC CL80"
input savearea ds 9d
file
Hi

17 edit eoj eserv
NEW FILE:

18

EDIT:
i punch eoj
file
H;
listio sysipt

SYSIPT DISK
H;
eserv eoj
R;

A

2

11 After the ESERV EXEC completes execution, you have three files. You may want to
examine the LISTING file to check the ESERV program listing. The MACRO file
contains the punch (SYSPCH) output.

12 The MACLIB command creates a macro library named DOSMAC MACLIB. Since the MAeLIB
command completed successfully, you can erase the files GETMACS ESERV, GETMACS
LISTING, and GETMACS MACRO; an asterisk in the filetype field of the ERASE command
indicates that all files with the filename of GETMACS should be erased.

13 Before you can invoke the assembler, you have to identify the macro library that
contains the macros; use the GLOBAL command, specifying DOS MAC MACLIB.

14 The ASSEMBLE command invokes the VM/SP assembler to assemble the source file; the
asterisks (*) indicate the CMS blip character, which you mayor may not have made
active for your virtual machine.

15 The assembler displays errors encountered during assembly. Depending on how
accurately you copied the program in this sample session. you mayor may not receive
some of these messages; you may also have received additional messages.

16 To correct the first error, which was the omission of a DS statement for SAVEAREA,
edit the file DCSTES~ ASSEMBLE and insert the missing line.

17 The second error indicates that the macro EOJ is not available. since it was not
copied from the source statement library. create another ESERV file to punch this
macro.

18 Use the LISTIO command to check that SYSIPT is still assigned to your A-disk, so
that you do not have to issue the ASSGN command again. Then issue the ESERV command
again, this time sFecifying the filename EOJ.

Appendix F Sampk Tt' ITIl1'nal Sessions F ~ 19

19 maclib add dosmac eoj
R-t
maclib
MACRO
OPEN
CLOSE
GET
PUT
DIMOD
DTFDI
EOJ
R;

map dosmac (term
INDEX SIZE

2 43
46 43
90 56

147 93
241 647
889 284

1174 6

20 erase eoj *
R;
assemble dostest

*
*
*

21 ASSEMBLER DONE

22

NO STATEMENTS FLAGGED IN THIS ASSEftBLY
R;
listfile
DOSTEST
DOSTEST
DOSTEST
R;

dostest *
ASSEMBLE A1
LISTING A1
TEXT A 1

print dostest listing
R;

23 doslked dostest

24
R;
listfile
DOSTEST
DOSTEST
DOSTEST
DOSTEST
DOSTEST
R;

dostest *
ASSEMBLE A1
DOSLIB A1
TEXT A 1
LISTING A1
MAP AS

19 Use the ADD function of the MACLIB command to add the macro EOJ to DOSI1AC MACLIB.
Then, issue the MACLIB command again, using the MAP function and the T~RM option to
display a list of the macros in the library.

20 Erase the EOJ files. You should always remember to erase files that you do not need
any longer. Reassemble the program.

21 This time, the assembler completes without encountering any errors. If your
ASSEMBLE file still has errors, you should use the editor to correct them.

22 Use the LISTFILE command to check for DOSTEST files. The assembler created the
files, DOSTEST LISTING and DOSTEST TEXT. The TEXT file contains the object module.
You can print the Frogram listing, if you want a printed copy. Then, you may want to
erase it.

23 Use the DOSLKED command to link-edit the TEXT file into an executable phase and
write it into a DOSLIB. Since this program has no external references, you do not
need to add any linkage editor control statements.

24 NOw, you have a DOS1EST DOSLIB, containing the link-edited phase, and a MAP file,
containing the linkage edi tor map. You can display t,he linkage editor map with the
TYPE command, or use the PRINT command if you want a printed copy.

F-20 VM/SP eMS User's Guide

25

26

tcp spool punch to *
punch test data a
PUN FILE 0100 TO BILBO
R;
tcp query reader all
ORIGINID FILE CLASS RECDS
PATTI 5840 A PUN 000097
assgn sysipt reader
R;
assgn syspch a
R;

COpy 01 NOHOLD

CPY HOLD DATE TIME NAME
01 NONE 09/29 15:00:39 TEST

TYPE
DATA

DIST
BIN211

21 dlbl outfile a cms punch output (syspch
R;
state punch output a
DMSSTT002E FILE NOT FOUND.
R (00028) ;

28 global doslib dostest
R;
fetch dostest
DMSFET710I PHASE 'DOSTEST' ENTRY POINT AT LOCATION 020000.
R;

29 start
DMSLI0740I EXECUTION BEGINS •••
R;
listfile punch output a (label
FILENAME FILETYPE FM FORMAT LRECL
PUNCH OUTPUT A1 F 80
R;
#cp query reader all
NO RDR FILES

RECS BLOCKS DATE TIME LABEL
91 10 9/29/79 14:50:55 BBB191

25 To execute this program in CMS/DOS, punch a file that has fixed-length 80-character
records into your virtual card punch. If you do not have any files that have
fixed-length, 80-character records, you can create a file named TEST DATA with the
CMS Editor, or by copying your ASSEMBLE source file with the COPYFILE command, as
follows:

copyfile dostest assemble a test data a
Use the CP SPOOL command to spool the punch to your own virtual machine, then use
the PUNCH command to punch the file. The PUN FILE message indicates that the file
is in your card reader. Use the CP QUERY command to check that it is the first, or
only file in your reader.

26 Use the ASSGN command to assign SYSIPT to your card reader and SYSPCH to your
A-disk.

27 When you assign a logical unit to a disk mode, you must issue the DLBL command to
identify the disk file to CMS. For this program execution, you are creating a CMS
file named PUNCH OUTPUT. The STATE command ensures that the file does not already
exist. If it does exist, rename it, or else use another filename or filetype on the
DLBL command.

28 Use the GLOBAL command to identify the DOSLIB, DOSTEST, you want to search for
executable phases, then issue the FETCH command specifying the phase name. The
FETCH command loads the executable phase into storage. When the FETCH command is
executed without the START option, a message is displayed indicating the entry point
location of the program loaded.

29 The START command begins program execution. The CMS ready message indicates that
your program completed successfully. You can check the input and output activity by
using the LISTFILE command to list the file PUNCH OUTPUT. If you use the CP QUERY
command, you can see that the file is no longer in your virtual card reader.

Appendix F. Sample Terminal Sessions F-21

30 assgn sysipt a
R;
dlpl infile a ems punch ou t.put (sysipt
R;
assgn syspeh punch
R;

31 fetch dostest (start
DMSLI07401 EXECUTION BEGINS •••

32 PUN FILE 5829 TO BILBO COPY 01 NOHOLD
R;
read punch2 output
R;
listfile punch2 output a (label
FILENAME FILETYPE FM FORMAT LRECL
PUNCH2 OUTPUT A1 F 80
R;

RECS BLOCKS DATE TIME
91 10 9/29/75 14:50:59

LABE!.
BBB191

30 If you want to execute this program again, you can assign SYSIPT and SYSPCH to
different devices; in this examFle, the input disk file PUNCH OUTPUT is written to
the virtual punch. You do not need to reissue the GLOBAL DOSLIB command; it remains
in effect until you reissue it or 1PL eMS again.

31 This time, the program execution starts immediately, because the START option is
specified on the FETCH command line.

32 Again, the PUN FILE message indicates that a file has been received in your virtual
card reader_ You can use the CMS command READCARD to read it onto disk and assign it
a filename and filetype, in this example, PUNCH2 OUTPUT.

F-22 VM/SP eMS User's Guide

Sample Terminal Session Using Access Method Services

This sample terminal session
should have an understanding
terminal session.

shows you how to use access method services under eMS. You
of VSAft and access method services before you use this

The terminal session uses a number of eMS files, ,which you may create during the
course of the terminal session; or, you may prefer to create all of the files that you
need beforehand. Within the sample terminal session, the file that you should create is
displayed prior to the commands that use it.

This terminal session is for both eMS OS VSAM programmers and eMS/DOS VSAM
programmers; all the ASSGN commands and SYSxxx operands that apply when the eMS/DOS
environment is active are shaded. If you have issued the command SET DOS ON, you must
enter the shaded entries; if not, you must omit the shaded "entries.

1

1. 7bis terminal session assumes that you have, to begin with, a read/write eMS A-disk.
This is the only disk required. Additicmal disks used in this exercise are temporary
disks, fcrmatted ~ith the Device Support Facility program under CMS. If you have OS
or DO~ disks available, you should use them, and remember to supply the Fro~er
volume and virtual d~vice address i~fcrDaticn, where appropriate. The number of
cylinders available to users for temporary disk space varies among installations; if
you cannot acquire a.ple disk sFace, see your system support personnel for
assistance.

2. output listings created by AftSERV take up disk space, so if your A-disk does not
have a lot of space on it, you may want to erase the LISTING files created after
each AMSERV step.

3. If any of the AMSERV commands that you execute during this sample terminal session
issue a nonzero return code; for example:

R (00012) ;

You should edit the LISiIBG file to examine
messages. The publication VSlLVSlH ~~§~ges gnd
reason codes issued by access method services.
the error, examine the DLBL commands and AMSERV
and retry the command.

#cp define t3330 200 10
DASD 200 DEFINED
#cp query virtual 200
DASD 200 3330 (TEMP) R/i

#cp define t3330 300 10
DASD 300 DEFINED
#cp query virtual 300
DASD 300 3330 (TEMP) R/W

#cp define t3330 400 10
DASD 400 DEFINED
#cp query virtual 400
DASD 400 3330 (TEMP) R/i

10 eYL

10 eYL

10 eYL

the access method services error
Codes contains the return codes and
-YOU should determine the cause of
files you used, correct any errors,

1 These commands define temporary 3330 mindisks at virtual addresses 200, 300, and
400.

Appendix F. Sample Terminal Sessions F-23

2 File: PUNCH DSF

INIT UNIT (200) DEVT!P (3330)
MIMIC (MINI (10»

INIT UNIT (300) DEVTYP (3330)
MIMIC (MINI (10»

INIT UNIT (400) DEVTYP (3330)
MIMIC (MINI (10»

3 File: DSF EXEC

&TRACE OFF
&CNTRL = &1

NVP!

NVFY

NVFY

&COMMAND CP CLOSE READER
&COMMAND CP PURGE READER CLASS I

VOLID (222222)

VOLID(333333)

VOLID (444444)

&COMMAND CP SPOOL PUNCH CONT TO * CLASS I
&COMMAND PUNCH IPt DSF S (NOH
&COMMAND PUNCH &CNTRL &FILENAME (NOH
&COMMAND CP SPOOL PUNCH NOCONT CLOSE
&COM~AND CP SPOOL READER CLASS I NOHOLD
&COMMAND CP IPL OOC CLEAR ATTN

4 exec dsf punch

NO FILES PURGED
PUN FILE nnnn TO CAMPEEL COpy 001 NOHOLD

DVTOC(0,1,1) -

DVTOC(0,1,1) -

DVTOC(0,1,1) -

5 ICK005E DEFINE INPUT DEVICE, REPLY 'DDDD,CUU' or 'CONSOLE'
ENTER INPUT/COMMAND:

~ This file contains control statements for the Device Support Facility program, which
initializes disks for use ty VSAM. these disks are labelled 222222, 333333, and
LlLI4444.

3 This file cc~tains the commands necessary to use the Device Support Facility program
ir a virtual machine.

4 Execute the [SF EXEC, specifying that the Device Support Facility control statements
ccntained in the file 'PUNCH nSF' should be appended to the standalone Device
Support Facility program.

~ these messages are issued by the Device Support Facility standalone program.

F-24 VM/SP eMS User's Guide

6 2540,00c
2540,00C
ICK006E DEFINE OUTPUT DEVICE, REPLY 'DDDD,CUU' or 'CONSOLE'
ENTER INPUT/COMMAND:

7 console
CONSOLE
ICKDSF - SA DEVICE SUPPORT FACILITIES 5.0 TIME20:26:00 03/09/82 PAGE 1

INIT UNIT(200) DEVTYP(3330) NVFY VOLID(222222} DVTOC(0,1,1) -
MIMIC (MINI (10))

ICK007001 200 BEING PROCESSED AS LOGICAL DEVICE = 3330 PHYSICAL DEVICE 3330-11
ICK003D REPLY U TO AlTER VOLUME 200 CONTENTS, ELSE T
ENTER INPUT/COMMAND:

8 u
U
ICK01314I VTOC IS LOCATED AT CCHH=X'OOOO 0001' AND IS 1 TRACKS.
ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

INIT UNIT (300) DEVTYP(3330) NVFI VOLID(333333) DVTOC(0,1,1) -
MIMIC (MINI (10))

ICK00700I 300 BEING PROCESSED AS LOGICAL DEVICE = 3330 PHYSICAL DEVICE

ICK003D REPLI U TO ALTER VOLUME 300 CONTENTS, ELSE T
ENTER INPUT/COMMAND:
u
U
ICK013141 VTOC IS LOCATED AT CCHH=X'OOOO 0001' AND IS 1 TRACKS.
ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

INIT UNIT(400) DEVTYP(3330) NVFY VOLID(444444) DVTOC(0,1,1) -
MIM IC (MINI (10))

ICK007001 400 BEING PROCESSED AS LOGICAL DEVICE = 3330 PHYSICAL DEVICE

ICK003D REPLY U TO ALTER VOLUME 400 CONTENTS, ELSE T
ENTER INPUT/COMMAND:
u
U
ICK013141 VTOC IS LOCATED AT CCHH=X'OOOO 0001' AND IS 1 TRACKS.
ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

3330-11

3330-11

ICKDSF MAXIMUM STORAGE USED = 278968 BYTES (FIXED = 258120, DYNAMIC
ICK00002I ICKDSF PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0

020848)

€' Since the DEvice Support Facility control statements reside in the virtual card
reader, you must indicate to Device SUFFcrt Facility the device type and the address
cf ycur virtual reader.

7 This response tells tevicE Suppcrt Facility to output all run time information to
ycur virtual machine console.

8 This response gives tevice Support Facility permission to proceed with the
iritializaticn cf the disk.

Appendix F. Sample Terminal Sessions F-25

9 tcp ipl cms parm autocr
C"S V"/SP1.2.0 SL 000
R;

10

11 access 200 b
D"SACC723I B (200) R/i
R;
access 300 c
D"SACC723I C (300) R/i
R· • access 400 d

- DOS

- DOS

Dr!SACC723I D (400) RIll - DOS
R;

12 query search
PLC191 191 A R/W
222222 200 B R/W - DOS
333333 300 C R/W - DOS
444444 400 D R/li - DOS
MNT190 190 S RIO
MNT191 190 Y S .. :.::.:.:.:.:!t/9.

R;

------ -------~

~ You must re-IPL CMS after all Device Support Facility processing has completed.
10 If you are a CMS/IOS user, you must access the VSE/AF SYSRES disk and issue the ISE~

DOS ON fm (VSAM' command. If you have not previously linked to the VSE/AF SYSRES,
you must use the CF LINK command before yeu issue the ACCESS command. Another
methed is to have the operator ATTACR the SYSRES disk to you virtual machine.
C~nsult. with your system programmer for the procedure to use at your installation.

11 ACCESS the three newly formatted disks as your B-, C-, and D-disks.
12 Yeu can issue the QUERY SEARCH command to verify the status of all disks you

currently have accessed.

F-26 VM/SP eMS User's Guide

13 File: MASTCAT AMSERV
DEFINE MASTERCATALOG -

(NAME (MASTCAT)
VOLUME (222222) -
CYL (4) -
UPDATEPW (GAZELLE) -
FILE (I J SYSCT)) DAT A (CYL (1))

14 ::::11111 :::::1:1:1111:::::::::1:,:

15

R;
dlbl ijsysct b dsn mastcat ':~I:I:I:I:g:I:I':: perm extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 171

R;

16 amserv mastcat
R;

17 File: CLUSTER AMSERV

18

DEFINE CLUSTER (NAME (BOOK.LIS~) -
VOLUMES (222222) -
TRACKS (20) -
KEYS (14,0) -
RECORDSIZE (120,132)) -
DATA (NAME (BOOK. LIST. DATA)) -
INDEX (NAME (BOOK.LIST.INDEX))

amserv cluster
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
gazelle
R;

19 File: REPRO AMSERV
REPRO INFILE (BFILE -

ENV (RECORDFORMAT(F) -
BLOCKSIZE(120) -
PDEV (3330))) -
OUTFILE (BOOK)

FILE MASTCAT

13 The file MASTCAT AMSERV defines the VSAM master catalog that you are going to use
and provides space for suballocated clusters.

14 Identify the master catalog volume, and use the EXTENT option on the DLBL command so
that you can enter the extents. For this extent, specify 171 tracks (9 cylinders)
for the master catalog. Since 4 cylinders are specified in the AMSERV file, the
remaining 5 cylinders'will be used for suballocation by VSAM.

15 You must enter a null line to indicate that you have finished entering extent
information.

16 Issue the AMSERV command, specifying the MASTCAT file. The ready message indicates
that the master catalog is created.

17 Define a suballocated cluster. This cluster is for a key-sequenced data set, named
BOOK. LIST.

18 No DLBL command is necessary when you define a suballocated cluster. Note that
since the password was not provided in the AMSERV file, access method services
prompts you to enter the password of the catalog, which is defined as GAZELLE.

19 Use the access method services REPRO command to copy a CMS data file into the
cluster that you just defined.

Appendix F. Sample Terminal Sessions F-27

20 :!llll.I:::I:::I:II::MI::I::::I::::I:
R;
copyfile test data a (recfm f lrecl 120
R;
sort test data a book file a
DMSSRT604R ENTER SORT FIELDS:
1 14
R;
dlbl bfile a cms book file j:ljlljljl[ljtl:::
Ri

21 :j:lljlll:j:j:;:j:ljllljl:ljj:::j:j::I::
R;
dlbl book b dsn book. list (vsam iilllll!lt
R;
amserv repro
R;

22 File: SPACE AMSERV
DEFINE SPACE -

(FILE (SPACE) -
TRACKS (57) -
VOLUME (333333)

j:jlj:I.:I:::j:::::III!I~jjjj:j::j:I;::
R;

23 dlbl space c (extent ;jjl:III:I::I::

24

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 57

R;
amserv space
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
gazelle
R;

FILE MASTCAT

20 You must identify the ddnames for the input and output files for the REPRO function.
BFILE is a CMS file, which must be a fixed-length, 120-character file, and it must
be sorted alphamerically in columns 1 through 14. The COPYFILE command can copy any
existing file that you have to the proper record format; the SORT command sorts the
records on the proper fields.

21 The output file is the VSAM cluster, so you must use the VSAM option on this DLBL
command.

22 Create an AMSERV file to define additional space for the master catalog on the
volume labelled 333333.

23 Again, use the EXTENT option on the DLBL command so that you can enter extent
information, and a null line to indicate that you have finished entering extents.

24 Issue the AMSERV command. Again, you are prompted to enter the password of the
master catalog.

F-28 VM/SP eMS User's Guide

:5

~6

File: UNIQUE AMSERV
DEFINE CLUSTER-

(NAME {UNIQUE. FILE) -
UNIQUE) -

DATA
{ CYL (3) -

FILE (KDATA) -
RECORDSIZE (100 132) -
K"EYS{12,O) -
VOLUMES {333333 } } -

INDEX -
{CYL (1)-

FILE (KINDEX) -
VOLUMES (333333) 1

d I bl k da t a c { ext e n t::::I:.:I:g:@iB:::
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
76 57

R;
amserv unique
4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV
gazelle
R;
File: USERCAT AMSERV

DEFINE USERCATALOG -
(CYL (8) -

FILE (IJSYSUC) -
NA~E {PRIVATE. CATALOG) -
VOLUME (444444) -
UPDATEPW (UNICORN) -
ATTEMPTS (2) } -

DATA (CYL (3))
INDEX (CYL (1)) -
CATALOG (MASTCA~/GAZELLE

~ 8 ::1::1:111::::' 1:111:11:: :::1:,
R;
dlbl ijsysuc d dsn private. catalog (extent :·1:1:11:11:: perm
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 152

Ri
amserv usercat

*
Ri

29 TAPE 181 ATTACHED

FILE MASTCAT

25 This AMSERV file defines a unique cluster, with data and index components.
26 You must enter DLBL commands and extent information for both the data and index

components of the unique cluster.
27 Next, define a private (user) catalog for the volume 444444. This catalog is named

PRIVATE. CATALOG and has a password of UNICORN. Again, as in step 13, space is made
available for suballocation.

28 When you define a user catalog that you are going to use as the job catalog for a
terminal session, you should use the ddname IJSYSUC.

29 You may want to try an EXPORT/IMPORT function, if you can obtain a scratch tape from
the operator. When the tape is attached to your virtual machine, you receive this
message.

Appendix F. Sample Terminal Sessions F-29

30 File: EXPORT AMSERV
EXPORT BOOK. LIST

INFILE (BOOK) -
OUTFILE (TEMP ENV (PDEV (2400) REWIND NOLABEL))

31 dlbl book b dSD book list (cat ijsysct ::;::1\1111:1:::
Ri

32 amserv export (tapout 181
DMSAMS361R ENTER TAPE OUTPUT DDNAMES:
temp
R;

33 File: IMPORT AMSERV

IMPORT
CATALOG (PRIVATE. CATALOG/UNICORN) -
INFILE (TEMP ENV (PDEV (2400) REWIND NOLABEL» -
OBJECTS (BOOK.LIST VOL (444444»

34 amserv import (tapin 181
DMSAMS361R ENTER TAPE INPUT DDNAMES:
temp
R;

30 The file that is being eXForted is the cluster BOOK.LIST created above. If you do
not have access to a tape, you can export the file to your CMS A-disk. Remember to
change the PDEV parameter to reflect the appropriate device type.

31 You must reissue the DLBL for BOOK. LIST, because there is a job catalog in effect,
and the file is cataloged in the master catalog. Use the CAT option to override the
job catalog.

32 There is no default tape value when you are using tapes with the AMSERV command. You
must specify the TAPIN or TAPOUT option and indicate the virtual address of the
tape. You are prompted to enter the ddname, which for this file is TEMP.

33 The last AMSERV file imports the cluster BOOK. LIST to the user catalog,
PRIVATE. CATALOG.

34 Read the tape in as inFut.

F-30 VM/SP eMS User's Guide

Glossary

This section explains some of the terms and acronyms that appear in
this manual. For a complete list of terms used in VM/SP refer to the
VM/SP Library Guide and Master Index.

ADCON. Is an A-type address constant used in the calculation of
storage addresses.

CMS (Conversational Monitor System). A component of Virtual
Machine/System Product (VM/SP) that is a conversational
operating system designed to run under Control Program (CP).

console stack. Refers collectively to the program stack and the
terminal input buffer.

CP (Control Program). A component of Virtual Machine/System
Product (VM/SP) that controls the resources of the real machine.

discontiguous saved segment. An area of storage beyond the address
of your virtual machine address space (not contiguous with your
virtual storage) where segments are loaded as needed.

ECB. Event Control Block

extended PLIST (uotokenized parameter list). Consists of four
addresses that indicate the extended form of the command as it was
entered at the terminal.

IPL. Initial program load.

look-aside entry. A nucleus resident routine becomes a look-aside
entry after it has been executed.

module. A nonrelocatable file whose external references have been
resolved.

nucleus. That part of CP or CMS that is resident in main storage.

program stack. Temporary storage for lines (or files) being
exchanged by programs that execute in CMS.

PLIST. Parameter list

REXX language. Restructured Extended Executor language used in
System Product interpreter programs.

SID code. Support Identification code

terminal input buffer. Holds lines entered at your terminal until CMS
processes them.

tokenized PLIST (parameter list). A string of doubleword aligned
parameters occupying successive double words.

virtual machine. A functional equivalent of a real machine.

VM/SP (Virtual Machine/System Product). A program product that
controls virtual machines.

Glossary X-I

X-2 VM/SP eMS User's Guide

Index

Special Characters

¢ logical line delete symbol C-l
.BX format word 20-4
.CM format word 20-6
.CS format word 20-6
.FO format word 20-6
.IL format word 20-7
.IN format word 20-7
.OF format word 20-8
.SP format word 20-10
.TR format word 20-11
&ARGS control statement, changing &n special variables

with B-23
&BEGEMSG control statement, when to use B-56
&BEGPUNCH control statement, when to use B-48
&BEGSTACK control statement, when to use B-41, B-43
&BEGTYPE control statement

examples B-12
when to use B-37

&CONTINUE control statement
following label B-I0
used with &ERROR control statement B-51

&CONTROL control statement
controlling execution summary of CMS EXEC

procedure B-49
example B-14

&DAT ATYPE built-in function, using to test
arguments B-25

&EMSG control statement, examples B-56
&ERROR control statement

example B-l1
provide error exit for CMS commands B-50

&EXIT control statement
example B-I0
passing return code to CMS B-34

&GLOBAL special variable, testing recursion level of CMS
EXEC B-33

&GLOBALn special variable
example B-29
passing arguments to nested procedures B-33

&GOTO control statement
example B-I0
transferring control in a CMS EXEC procedure B-28

&HEX control statememt, examples B-21
&IF control statement

maximum number allowed in nest B-28
testing variable symbols B-28

&INDEX special variable .
example B-7
testing B-24
using to establish loop B-24

&LENGTH built-in function, using to test arguments B-25
&LITERAL built-in function

example B-32
substitution, example of B-21

&LOOP control statement
example B-ll
execution summary when &CONTROL ALL is in

effect B-58
preparing loops in CMS EXEC procedure B-31

&n special variable, manipulating B-23
&PUNCH control statement

punching jobs to CMS batch facility 12-8
using to create file B-48

&READ control statement

ARGS operand B-8
changing the &n special variables with B-23
examples B-12
reading CMS commands B-35

&READFLAG control statement
determining if console stack needs to be cleared B-44
using to test console stack B-42

&RETCODE special variable
example B-I0
testing after CMS command execution B-51
using with &EXIT control statement B-51

&SKIP control statement
example B-ll
transferring control in a CMS EXEC procedure B-30

&SPACE control statement, example B-13
&STACK control statement

stacking CMS EXEC files with B-45
stacking lines B-14
using in edit macros B-59
using to stack null lines B-43
when to use, in edit macros B-60

&SUBSTR built-in function, example B-32
&TIME control statement, example B-14
&TRACE statement, in EXEC 2 14-3
&TYPE control statement

displaying prompting messages in CMS EXEC
procedure B-36

examples B-7, B-12
when to use B-36

&TYPEFLAG special variable B-38
&1 through &30

special variables B-7
substitution in EXECs B-7

$, used as first character of filename for edit macros B-59
$COL edit macro B-71
$CO'NT EXEC B-64
$DUP edit macro, example A-13
$LISTIO EXEC file 10-9
$MACROS edit macro B-68
$MARK edit macro B-69

used to enter continuation character A-20
$MOVE edit macro, how to use A-13
$POINT edit macro B-70
• (asterisk)

as fileids on command lines 3-3
in CMS EDIT subcommands A-5
in FILELIST command 3-22
in filemode field 3-12
in LISTFILE command 3-22
used to write comments in CMS EXEC procedure B-54

·COpy statement
examples 9-13
used in CMS/DOS, example 10-17

/ (diagonal), as delimiter on CMS EDIT subcommands A-4
/.

CMS batch facility control card, used to signal 12-3
end-of-file indicator

in AMSERV file 11-3
in batch job 12-11

in REXX language, interpreted as comment 15-1
/ I record, used as delimiter in MACLIBs 9-16, 10-20
/JOB control card, description 12-2
/SET control card, description 12-3
% (percent symbol), setting CMS EXEC procedure

arguments to blanks B-24
? (question mark)

Index X-3

subcommand
example A-28
usage A-28

usage, as argument for CMS EXEC procedure B-54
?EDIT ~essage A-5
Oogicalline end symbol)

description C-l
restrictions on stacking in CMS EXEC procedure B-40
used to enter null line in input mode A-2
using when setting PF (program function) keys 1-6

#CP function .
used when setting PFnn RETRIEVE 1-6
using in edit or input mode A-24
using on display terminals 1-5

@ (logical character delete symbol) C-l
using when setting PF (program function) keys 1-7

= (equal sign)
entered in fileids on command lines 3-3

= subcommand
See REUSE subcommand

" (logical escape symbol) C-2

A

A-disk 3-9
ACCESS command

accessing CMSdisks 1-17
response when you access VSAM disks 11-5
used with OS disks 9-3

access method services
CMD /DOS, using tape input/output 11-17
control statements, executing 11-3
executing in CMS, eXJlD1ples. 11-28
functions

DEFINE CLUSTER 11-29
DEFINE MASTERCATALOG 11-12
DEFINE USERCATALOG 11-13
DELETE 11-30
EXPORT 11-30
IMPORT 11-30
REPRO 11-30

restrictions on using for OS and VSE u~ers 11-2
return codes 11-4
using in CMS 11-1
using in CMS/DOS 11-11
using tape input/output 11~26

access methods
OS, supported in CMS 9-3
VSE, supported in CMS· 10-5

accessing
directories of VSE libraries 10-14
disks

as read-only extensions 3-11
in CMS 1-17
in CMS batch virtual machine 12-5

DOS disks 10-4
file directories for CMS disks 3-16
OS disks 9-3
VSE system residence volume 10-1

ACTION, VSE linkage editor control statement 10-25
ADD operand, of MACLIB command

usage 9-12
usage in CMS/DOS 10-18

adding
members to macro library

example 9-13
example in CMS/DOS 10-18

address
stops

X-4 VM/SP CMS User's Guide

setting 13-8
to enter CP environment 2-5

virtual
calculating for instruction in program 13-2
definition 1-14
for unit record devices 6-1

ADSTOP command, how to set address stops 13-8
ALIAS, OS linkage editor control statement, supported by

TXTLIB command 9-24 .
ALL

operand
of &BEGSTACK control statement, when to

use B-41
of &BEGTYPE control statement, when to

use B-37
of &CONTROL statement, using to debug CMS

EXECs B-56
allocating

space for VSAM files (CMS/DOS) 11-15
space for VSAM files (OS) 11-24
VSAM extents on OS disks and minidisks 11-20

ALTER subcommand
global changes A-II
how to use A-I0

altering
characteristics of spool files 6-4
characters in a CMS file, with ALTER

subcommand A-I0
multiple occurrences of character in file A-II

AMSERV
command

executing in CMS EXEC procedure 11-32
how to use 11-28

files,examples 11-3
filetype 11-3
functions under CMS 11-28
using to read tapes 11-27

annotated, edit macro B-66
annotating, CMS EXEC procedures B-54
APL, using on display terminal 2-9
appending, data to existing files, during program

execution 9-9
arguments

in CMS EXEC procedure B-7, B-23
checking B-25
passing to nested EXECs B-33
testing B-25

on RUN command, passing parameter list 8-4
on START command, parameter list 8-4

ASM3705 filetype, usage in CMS/DOS 3-4
ASSEMBLE

command
assembling OS programs 9-20
assembling source programs in CMS /DOS 10-23

filetype
usage in CMS 3-4
used as input to assembler 9-20

assembler language macros 10-21
assembling

OS programs in CMS 9-20
programs, in CMS/DOS 10-23
programs, using CMS batch facility 12-10
source files, from OS disks 9-20
VSAM programs in CMS 11-1

ASSGN command
entering before program execution 10-29
filemode letters to disks 3-9
using to assign logical units 10-7

assigning

logical units in CMS/DOS
before program execution 10-29
for VSAM catalogs 11-13
to disk devices 10-9
to virtual devices 10-9

values to variable symbols, in CMS EXEC
procedure B-8

assignment statement, examples B-8
attention interruption

causing 2-7
virtual machine 2-8

automatic
IPL 1-4
save function for editors 5-2

AUTOREAD operand, of CMS SET command, display
terminals 1-8

auxiliary control files 8-27
preferred 8-30

auxiliary processing routine, receiving control during I/O
operation 9-9

AUXPROC option, of FILEDEF command 9-9
refid=movefi,copying OS data sets 9-10

AUXxxxx filetype

B

auxiliary control files 8-27
usage in CMS 3-4

backspace
changing in file being edited A-18
characters
effect of image setting A-18

batch
facility

See CMS batch facility
jobs for CMS batch facility 12-1
jobs, for Non-CMS users 12-11
processing, in CMS 12-1

batch jobs
purging 12-7
reordering 12-7

BDAM, access method, CMS support 9-4
BEGIN command, to return to virtual machine

environment 2-2
beginning

tracing 13-6
virtual machine execution 2-2
your terminal session 1-3

blanks
as delimiters, on CMS EDIT subcommands A-4
in character strings, changed with CHANGE

subcommand A-9
used on OVERLAY subcommand A-II

BLOCK option, of FILEDEF command 9-8
BLP

See bypass label processing, tapes
books, from DOS/VSE source statement libraries,

copying 10-11
BOTTOM subcommand, moving current line pointer to end

of file A-31
BP AM access method, CMS support 9-4
branching in eMS EXEC procedure

&GOTO control statement B-28
&SKIP control statement B-30
based on &IF control statement B-28

BREAK subcommand, setting program breakpoints 13-3
breakpoints, setting 13-3
BSAM access method, CMS support 9-4
buffers, used by FSCB 8-11

BUFSP option
in CMS/DOS, option of DLBL command 11-11
of DLBL command 11-20

bypass label processing, tapes 6-14

c

calculating storage available in your virtual machine 10-30
caller id, in tape label processing 6-15
calling HELP files 19-1
canceling

changes during editing session 5-3
DLBL definitions 10-11
user-written Immediate commands 8-7
verification of changes made by CMS editor A-8

card punch
used in CMS EXEC procedure B-13
used to send jobs to CMS batch facility 12-1

card reader
restriction on use in job for CMS batch facility 12-6
spooling punch or printer files to 6-3

cards
/* as end-of-file indicator 12-2
as input to CMS batch facility 12-1

CASE subcommand, usage A-16
CAT option, of DLBL command 11-11, 11-20

identifying catalogs 11-22
identifying catalogs, in CMS/DOS 11-13

cataloged procedures, OS, equivalent in CMS 9-2
CATCHECK command 11-15, 11-24
causing breaks in text 20-10
CAW (channel address word), displaying, with DISPLAY

command 13-10
CHANGE

command, changing hold status on spool files 6-4
subcommand

c~anging

global changes A-II
how to use A-9
using in edit macros B-64

characteristics of spool files 6-1
characteristics of unit record devices 6-1
file identifier, on SAVE command A-25
filemode numbers 3-14
filemode of file, FMODE command A-25
lines in file being edited A-9
lines that contain backspace characters A-18
multiple occurrences of character string in file A-II
output representation of a character 20-11
the HELP facility 20-1 '

channel address word
See CAW (channel address word), displaying, with

DISPLAY command
channel status word

See CSW (channel status word), displaying, with
DISPLAY command

character, strings, changing A-9
characters

altering
with ALTER subcommand A-I0
with CHANGE subcommand A-9

deleting from line C-l
special

valid in CMS file identifiers 3-1
CLASS operand, of SPOOL command 6-1
classes

CP command privilege E-l

Index X-5

of CP SPOOL files 6-1
clearing

console stack
at top or end of file . B-61
for edit macro execution B-61
in CMS EXEC procedure .B-44
issuing message after 8-61

DLBL definitions 10-11
FILEDEF definitions 9-8,9-9
job catalogs 11-24
job catalogs in CMS/DOS 11-15

CLOSE macro, OS simulation 9-19
closing

CMS files, after reading or writing 8-14
virtual card punch, after using &PUNCH control

statement B-13
virtual unit record devices 8-17

clusters, VSAM, defining and deleting 11-29
CMS

operand, of DLBLcommand 10-10
saved system name 13-16

CMS (Conversational Monitor System)
commands .

See CMS commands
description 1-1
file system· 3-1
files

See files, CMS
loading into your virtual machine 1-4
OS simulation 9-1
understanding it 1-1
VSE simulation 10-1

CMS batch facility
/* 12-2
/JOB 12-2
/SET 12-3
control cards 12-1
description 12-1
housekeeping done after executing job 12-4
how jobs are processed 12-4
ID card 12-1
jobs for non-CMS users 12-11
using CMS EXEC procedure to submit jobs 12-8

CMS commands
executing

from program 8-4
in CMS EXEC procedure B-48
in edit macros B-59
valid in edit macros B-59

execution characteristics 3-19
general information 1-2
nucleus-resident 3-19
processing tape labels 6-21
search order 3-17
stacking in CMS EXEC procedure B-40
summary D-1
transient area 3-19
used in CMS/DOS

See CMS/DOS
used with EXECS written in REXX language 18-1
used with OS data sets 9-3
using CMS EXEC procedure to modify B-48

CMS EDIT subcommands
delimiters A-3
summary of A-31

CMS Editor
environment 2-3
how to use A-I
invoking A-I
migration mode 1-2

X-6 VM/SP CMS User's Guide

CMS environment 2-2
CMSEXEC

built-in functions, summary 8-9
command

when to use B-2
control statements, summary 8-15
files, created with LISTFILE B-4
filetype, for edit macros B-59
interpreter, how lines are processed 8-58
procedures

creating B-2
debugging B-56
nesting B-33
opening and closing files 8-14
submitting jobs to CMS batch facility 12-2
testing in CMS subset B-57
to execute as programs 9-27
to execute VSE programs 10-31

processing errors B-55
special variables, summary B-17

CMS EXEC file
format 8-6
modifying 8-6
sorting B-5

CMS files
See files

CMS macro instructions
examples 8-17
usage 8-9

CMS menu, invoked by HELP command 19-6
CMS stacks, example 17-1
CMS subset

environment 2-3
using A-30
using to test CMS EXEC procedure 8-57

CMS/DOS
commands

ASSGN 10-7
DOS LIB 10-27
DOSLKED 10-25
DSERV 10-14
entering 2-6
ESERV 10-13
FETCH 10-15
LISTIO 10-8
PSERV 10-13
RSERV 10-12
SSERV 10-12
summary 10-3

end-of-tape processing 6-24
entering the environment 10-1
overview 2-6
program development using 10-1
relationship to CMS and VSE 10-1
restrictions on reading DOS disk files 10-5
saved system name 13-17
tape label processing 6-18
terminology 10-1

CMSAMS, saved system name 13-17
CMSDOS, saved system name 13-17
CMSLIB MAC LIB 9-16
CMSLIB, ddname, used to identify as macro libraries 9-17
CMSUT1 file, CMS commands that create 3-8
CMSVSAM, saved system name 13-17
CNTRL file type

control files 8-26
usage in CMS 3-4

command
environments 2-1
how to enter 1-1

language 1-1
CMS 1-2
CP 1-1

lines, how scanned in CMS 8-2
comment

in CMS EXEC procedure B-54
in HELP text files 20-6
in REXX language 15-1

COMMENT statement 8-22
communicating

with CMS and CP during editing session A-24
with other computer users 7-1
with VM/SP 1-1

COMP
operand of MACLm command

usage 9-14
usage in CMS/DOS 10-18

COMPARE command, comparing contents of two CMS
files 3-23

comparing, variable symbols in CMS EXEC procedure B-12
refid.respd.to commands in CMS EXEC

procedure B-12
compilers, supported in CMS 1-2
components, of VM/SP 1-1
composing notes 7-7
compressing

DOSLm files 10-27
MACLms 9-14
MACLms in CMS/DOS 10-18

CONCAT option, of FILEDEF command, example 9-17
conditional execution, &LOOP control statement B-30
conditionally displaying text 20-6
console

log
creating disk file from 1-18
printing 1-18
produced by CMS batch facility 12-6

output, spooling for display terminal 1-18
console stack

cleared in case of error during edit macro
execution B-61

clearing B-44
description 17 -1
exchanging data between programs 17-1
manipulating with System Product interpreter 17-1
when bypassed 17-2

CONT
operand, of CP SPOOL command 6-3
using to spool virtual card punch in CMS EXEC

procedure B-48
continuation character, how to enter in column A-19
continuous spooling 6-3
control cards, for CMS batch facility

See CMS batch facility
control file update, example 8-29
controlling

CMS loader 9-25
terminal output 4-6

converting
decimal values to hexadecimal, in CMS EXEC

procedure B-21
fixed-length files to variable-length format A-14
hexadecimal values to decimal, in CMS EXEC

procedure B-21
CONW AIT function

example B-45
using to clear console stack B-45

COPY
files

adding to MACLm 9-13

adding to MACLm, in CMS/DOS 10-18
filetype

usage in CMS 3-4
usage in CMS/DOS 3-7

function, on display terminals 1-18
operand, of CP SPOOL command 6-2

COPYFILE command
changing filemode numbers 3-15
changing record formats of file B-2
copying files from one virtual disk to another 3-23
creating small files from large one A-29

copying
books, from VSE source statement libraries 10-11
contents of a display screen 1-18
DOS files into CMS files 10-6
file, with COPYFILE command 3-23
files, from one device to another 6-6
from tape to disk 6-6
lines from CMS file A-13
macros from VSE libraries to add to CMS

MACLm 10-18
members of MACLms 9-16
modules from VSE library or SYSIN tapes 10-6
modules from VSE relocatable libraries 10-12
OS data sets into CMS files 9-9
parts of CMS file, with GETFILE subcommand A-13
spool files 6-2
VSAM files into CMS disk files 11-30

core image libraries
CMS

See DOSLm, files
DOS, using in CMS/DOS 10-15

corrections
of lines as you enter them 1-6
using logical line editing symbols C-l

counters, using in CMS EXEC procedure B-30
CP (Control Program)

basic description 1-1
I commands, general information 1-1
environment, entering 2.;.2
privilege classes E-l
spooling facilities 6-1

CPcommands
comparison to CMS debugging facilities 13-13
executing from programs 8-5
summary E-2 .
used for debugging 13-10
used in job for CMS batch facility 12-6
used in System Product interpreter EXECs 15-4

CP READ status, on display terminal 1-7
creating

CMS EXEC file, with LISTFILE command B-4
CMS files

from DOS disks and tapes 10-6
from DOS libraries 10-6
from OS data sets 9-9
in CMS EXEC procedure B-47

CMS macro libraries
example 9-11
example in CMS/DOS 10-16
from VSE macro library 10-16

DOSLm files 10-27
file system control block (FSCB) 8-9
file with System Product editor 5-1
HELP text files 20-3
Immediate commands 8-6
menus, HELP file 20-2
modules from VSE library or SYSIN tapes 10-6
notes 7-7

Index X-7

one spool file from many files· being printed or
punched 6-3

PROFILE EXEC 16-1
program modules 9-27
reserved filetypes B-53
System Product interpreter EXECs 15-1
user-written commands 9-27

creating buffers
using DESBUF command 17-2
using DROPBUF command 17-2
using MAKEBUF command 17-2
using SENTRIES command 17-2

CSW (channel status word), displaying, with DISPLAY
command 13-10

current line pointer
displaying when verification is off A-8
how to use A-5
positioning A-S

cylinders
extents

D

entering in CMS/DOS 11-12
specifying for OS disks 11-20

on 2314/2319 disk 11-20
on 3330 disk 11-21

data control block (DeB, relationship to FILEDEF
command 9-5

data sets, OS, using in CMS 9-2
DCB (Data Control Block) exit 9-8
ddnames

in OS VSAM programs, restricted to seven characters in
CMS 11-11

specifying with FILEDEF command 9-5
used by assembler 9-20
used when assembling source programs 10-23

DDR command, used with OS data sets 9-3
DDR program, dumping to tape with 6-8
de-editing, VSE macros 10-13
DEBUG

command 2-S
to enter debug environment 13-2

subcommands
compared to CP debugging commands 13-13
entering 2-S
monitoring program execution 13-3
relationship to CP debugging commands 13-10
summary 13-4

debug environment 2-5
debugging

CMS EXEC procedures B-56
commands and subcommands, used in

relationship 13-10
nonrelocatable MODULE files 13-12
programs 13-1
summary of command differences 13-13
using CP PER command 13-6

decimal, and hexadecimal conversions in CMS EXEC
procedure B-21

default
DLBL definitions 10-10
FILEDEF definition 9-7
filetypes for CMS editor, establishing with CMS

EXEC B-53
logical line editing symbols C-I
notebook 7-8
setting with DEFAULTS command 7-8

DEFINE

X-8 VM/SP eMS User's Guide

access method services function 11-28
command

defining temporary disks 1-15
defining virtual storage 13-15
to increase virtual storage size A-29

subcommand, defining symbols for debugging
session 13-4

c:iefining
logical line editing symbols C-2
program input and output files in CMS 9-22
space for VSAM files 11-24
space for VSAM files, in CMS/DOS 11-15
tapes

nonstandard 6-19
standard 6-19
unlabelled 6-19

temporary disks 1-15
virtual printer for trace information 13-9
virtual storage 13-15
VSAM files

for AMSERV 11-19
for AMSERV, in CMS/DOS 11-11

VSAM master catalog 11-21
VSAM master catalog, in CMS/DOS 11-12

DEL operand
operand, of MAC LIB command 9-14
used in CMS/DOS 10-18

DELETE
access method services function 11-30
statement, description 8-21
subcommand, how to use A-12

deleting
lines in a file being edited A-12
members of MACLIB

example 9-14
example in CMS/DOS 10-18

VSAM clusters and catalogs 11-30
delimiters, on CMS EDIT subcommand lines A-3
density of tapes, when to specify 6-27
DESBUF

example B-46
using to clear the console stack B-45

DESBUF command, used to create buffers 17-2
DETACH command, after RELEASE command 1-18
detaching disks 1-17

without releasing them 3-16
Device Support Facility, formatting temporary disks 11-9
device types

assignments in CMD /DOS 10-7
specifying with FILEDEF command 9-6

devices, disks, cylinders, and tracks 11-20
DIAGNOSE instruction, executing CP commands 8-5

virtual storage, during program execution 8-8
PlRECT, filetype, usage in eMS 3-4
DISCONN. command 1-4
disconnecting your terminal from your virtual machine 1-4
discontiguous saved segments 13-17
DISK command

DUMP operand, using 6-6
LOAD operand, restriction in job for CMS batch

facility. 12-6
LOAD operand, using 6-6
loading files 7-8

disk determination
default for reading files

commands that search all accessed disks 3-11
commands that search only A-disk 3-11
commands that search only A-disk and its

extensions 3-11

default for writing files
commands for which you must specify

filemode 3-12
commands that write output to A-disk 3-12
commands that write output to read/write

disk 3-13
filemode selection by CMS editor A-3

disks
defined in VM/SP directory entry 1-14
defining, temporary disks for terminal session 1-15
definition 1-14
DOS and OS

compatibility 11-6
formatting with Device Support Facility 11-9
used with VSAM data sets 11-5

DOS, accessing 10-4
extensions 3-10
full, in editing session, recovery from A-30
how much space is on a disk 3-15
identifying to CMS 1-17
linking 1-17
listing information about the files on 3-20
master file directory 3-16
OS

determining extents for VSAM 11-20
using in CMS 9-2

providing for CMS batch virtual machine 12-5
query status of 3-15
read-only extensions 3-10
read-only, exporting VSAM files from 11-30
search order 1-17
sharing 1-16

DISP MOD, option of FILEDEF command 9-9
display

full screen, System Product editor 5-3
HELP CMS menu 19-6
mUltiple views 5-1

DISPLA Y command, displaying storage and registers while
debugging 13-10

display screen, status notices 1-7
display terminals

characteristics 1-7
entering commands 1-5
example of display screen 1-19
Extended highlight feature 1-9
Iinemode 5-5
retrieving previously entered data 1-6
setting PF keys 1-6
signalling interruptions 2-7

displaying
column nunnbers in file being edited, using $COL

macro B-71
commands 19-1
data lines at terminal, in CMS EXEC procedure B-36
directories of VSE libraries 10-14
DLBL definitions 10-11
FILEDEF definitions 9-23
general registers, in debug environment 13-2
HELP files 19-1
lines at terminal, WRTERM macro 8-17
lines, with CMS EXEC procedure B-12
list of CMS files 3-20
listings from access method services 11-4
message text 19-2
particular columns of file, during CMS edit session A-8
PSW (program status word), during program

execution 13-5
screensfull of data 1-8

short form of editor error messages A-26
timing information in CMS EXEC procedure B-14
tracing information on terminal 13-9
virtual storage during program execution 13-10

disposition, of spool files 6-1
DL/I programs in CMS/DOS 10-4
DLBL command

assigning file mode numbers 3-15
default file definitions 10-10
defining OD data sets 9-2
entering before program execution 10-29
EXTENT option, examples 11-16
how to use in CMS/DOS 10-9
identifying VSAM data sets 11-19
identifying VSAM data sets on CMS/DOS 11-11
relationship to ASSGN command 10-9
specifying extents 11-25
specifying extents in CMS/DOS 11-16

DMS, prefixing error messages in CMS EXEC
procedure B-56

DMSSP MACLm 10-20
documenting, CMS EXEC procedures B-54
DOS (Disk Operating System)

files
identifying in DLBL command 10-10
restrictions on reading in CMS 10-5
using in CMS 10-4

macros supported in CMS 10-21
program development, commands used for 4-16
simulation in CMS 10-1

DOS disks, compatibility with OS disks 11-6
DOSLm

command, compressing DOSLms 10-27
files 10-27

executing phases from 10-28
size considerations 10-27

filetype, usage in CMS/DOS 3-7
DOSLKED command, link-editing programs in

eMS/DOS 10-25
DOSLNK

files, used in CMS/DOS 10-25
file type

usage in CMS/DOS 3-7
used by DOSLKED command 10-26

DOSMACROMACLm 9-16
DOSPART operand, of CMS SET command, example 10-30
drawing boxes 20-4
DROPBUF command, used to create· buffers 17-2
DSERV command, examples 10-14
DSN operand, of DLBL command 10-10
DSORG option, of FILEDEF command, when to

specify 9-8
DSTRING subcommand

example A-4
using in edit macros B-64

dummy data set name, specifying on FILEDEF
command 9-6

DUMP
command, example 13-12
subcommand, example 13-12

dunnping,virtualstorage 13-12
duplicating

filenames or filetypes 3-2
lines in CMS file A-13

DVOLI function, in tape command processing 6-22
dynamic loading, of TEXTLIB members 9-27

Index X-9

E

EEXEC B-53
EDIT command

assigning filemode when editing A-I
creating CMS files A-I
executing in CMS EXEC·procedure B-43

EDIT macros
&COL B-71
&DOUBLE. B-66
$CONT B-64
$DUP B-65

, $MACROS B-68
$MARK B-69
$MOVE B-65
$POINT B-70
CMS commands valid in B-59
distributed with CMS B-65
how to write· B-68

edit mode, returning from input mode 5-3
EDIT subcommands

description A-3
executing in edit macros B-62
stacking in console stack B-43

editing
by line-number A-22
CMS files 5-1
session 5-1
with logical line editing symbols C-l

end of file
in file being edited, CMS editor A-6
indicating for input stream to batch virtual

machine 12-3
end-of-tape, processing 6-24
end-of-volume, processing 6-24
entering

APL characters on display terminal 2-9
CMS commands, in CMS subset environment 2-4
CMS EDIT environment A-I
CMS EDIT subcommands A-3
CMS environment 1-4
CMS/DOS environment 2-6
commands

more than one on command line C-l
on display terminal 1-5

CPcommands
from CMS command environment 2-2
from edit environment 2-4

CP environment
after program check 13-11
during program execution 13-8
from CMS environment 2-2

debug environment
after program abend 13-1
via breakpoint 13-3
via CP EXTERNAL command 2-5
via DEBUG command 2-5
yja external interruption 13-8

DEBUG subcommands 2-5
DLBL definitions, in eMS EXEC procedure 10-31
entry, linkage, for assembler language programs in

CMS 8-3
file identifications

on DLBL command 10-10
on FILEDEF command 9-6
on LISTDS command 10-4

FILEDEF definitions, in CMS EXEC procedure 9-27
HELP facility 1-2
Immediate commands 2-7
lines at terminal, during program execution 8-17

X-tO VM/SP CMS User's Guide

logical line editing symbols as data C-2
multivolume VSAM extents 11-25
multivolume VSAM extents, in CMS/DOS 11-16
null lines 1-1
special characters

using ALTER subcommand A-I0
VSAM extent information in CMS/DOS 11-16

entry point
displayed following FETCH command 10-28
for program execution, determining 9-26
specifying for program execution 9-25
specifying, using OS entry statement 9-24

ENTRY, OS linkage editor control statement, supported by
TXTLffi 9-24

environments, VM/SP 2-1
EOF, token stacked when edit macro executed at end of

file B-61
EOF: message A-6
ERASE command 1-14
erasing

CMS files 1-14
file, to clear disk space during editing session A-30

error messages
controlling whether you receive them 1-1
displayed by CMS editor, short form A-26
in CMS EXEC procedure B-55

error processing
messages 6-25
NSL routines 6-25
OS simulation 6-25
standard label processing 6-25

ESERV
command, examples 10-13
filetype, usage 10-13
usage in CMS/DOS 3-7

examining, output listings, from access method services 11-3
EXEC

filetype, usage in CMS/DOS 3-7
filetype, use in CMS 3-4
procedures

EXEC 2

debugging B-56
executirig from program 8-4
nesting B-33
to execute Device Support Facilities program 11-9
using to submit jobs to CMS batch facility 12-9

&TRACE statement 15-1
comparison to EXEC 14-1
comparison to System Product interpreter 14-1
files

attributes 15-1
format 15-1

invoking 15-1
parameter li~ts 8-2
used with System Product editor 5-1

executing.
access method services, in EXEC procedure 11-32
CMS commands

from programs 8-4
in CMS EXEC procedure B-48

command, using program function (PF) keys 1-6
CP commands, from programs 8-5
DOS programs

setting UPSI byte 10-31
specifying virtual partition size 10-30
using CMS EXEC procedure 10-31

EXEC procedures 15-1
executable statements in CMS EXEC procedure B-1
Immediate commands in EXECs 18-1

MODULE files 9-27
from programs 8-7

OS programs 9-21
restrictions 9-21
using CMS EXEC procedures 9-27

PROFILE EXEC 16-1
programs, in CMS/DOS 10-28
TEXT files 9-22
VSAM programs 11-1
VSE procedures 10-11

execution characteristics, of CMS commands 3-19
execution summary of CMS EXEC procedure B-58

edit macros B-59
execution.

conditional, using &IF control statement B-27
paths, in CMS EXEC procedure B-26

exit linkage, for assembler language programs in CMS 8-3
exiting
EXPORT, access method services function 11-30
exporting, VSAM data sets 11-30
extensions, read-only, using 3-9
extent information when defining VSAM master

catalog 11-12
EXTENT option

of DLBL command 11-20
of DLBL command, in CMS/DOS 11-11

extents
determining for VSAM functions 11-8
for VSAM files

entering in CMS/DOS 11-16
multiple 11-25
multiple in CMS/DOS 11-16

external references, how CMS loader resolves 9-24
EXTERNAL, command, interrupting program

execution 13-8
extracting, members of MACLms 9-15

F

FETCH command, executing programs in CMS/DOS 10-28
fetching, core image phases for execution in

CMS/DOS 10-28
FIFO, first-in first-out stacking, in CMS EXEC B-41
file

definitions, making with FILEDEF command 9-5
directories, CMS 3-16
format, specifying on FILEDEF command 9-7
identifier

assigned by FILEDEF command 9-5
changing with SA VB subcommand 5-2
CMS, rules for assigning 3-1
coded as asterisk (*) 3-2
coded as equal sign (=) 3-3
default assigned by DLBL command 10-10
specifying for FSCB 8-9
used in FSCB 8-11

size, relationship to record length A-14
system 3-1

file manipulation, System Product editor 5-1
file status table (FST) 2-5,9-2
FILE subcommand, writing file onto disk 5-1
FILEDEF command

assigning filemode numbers 3-15
default definition 9-7
guidelines for entering 9-5
how to use 9-5
issued by assembler, overriding 10-23
OS simulation 6-11
standard tape labels 6-12

tape label processing 6-16
used to identify OS macro libraries 9-16
used with OS data sets 9-3

FILELIST command, used to list disk files in full screen
environment 3-20

filemode
in file identifier 3-1
letters

assigning 3-2
when to specify, reading files 3-11
when to specify, writing files 3-12

numbers
descriptions 3-9
when to specify 3-13

filemode 0 3-13
filemode 1 3-13
filemode 2 3-13
filemode 3 3-14
filemode 4 3-14
filemode 5 3-14
filemode 6 3-14
filename 3-1
files

CMS
erasing 3-22
format 3-1
identifiers 3-1
identifying on DLBL command 10-10
renaming 3-23

discarding after being read 3-22
HELP 19-1
logical grouping 3-7
manipulating with CMS macro instructions 8-9
private 3-13
requesting information about 3-20
shared by users 3-13
splitting into smaller files A-29
too large to edit, what to do A-29

filetn>e
created by assembler and language processors 3-3
creating your own B-53
default record length when editing A-14
HELP facility 19-12

HELPCMS 3-5
HELPCP 3-5
HELPDEBU 3-5
HELPEDIT 3-5
HELPEXC2 3-5
HELPEXEC 3-5
HELPHELP 3-5
HELPMENU 3-5
HELPMSG 3-5
HELPPREF 3-5
HELPREXX 3-5
HELPSET 3-5
HELPSQLD 3-5
HELPXEDI 3-5

in file identifier 3-1
reserved for language processors 3-3
temporary work files 3-8
used by CMS commands 3-4

FIND subcommand, how to use A-7
first-in first-out (FIFO) stacking, in CMS EXEC B-41
fixed-length files, converting to variable length A-15
fixed-length, CMS EXEC file, difference between

&BEGSTACK and &STACK B-2
FMODE subcommand, used to change filemode

numbers A-25
FOR operand, of CP SPOOL command, usage 6-2

Index X-11

FORMAT command, formatting CMS disk I-IS
format of disk files, specifying on FILEDEF command 9-7
format words

.BX 20-4

.CM 20-6

.CS 20-6

.FO 20-6

.IL 20-7

.IN 20-7

.OF 20-8

.SP 20-10

.TR 20-11
summary 20-4

format-mode, processing 20-1
formatting

CMS disks, example I-IS
numbered lists 20-9
OS and DOS disks 11-9
temporary disks 11-9

forming, tokens of words in CMS EXEC B-18
free space, on OS and DOS disks, determining for use with

VSAM 11-8
FREELOWE 10-30
FRERESPG 10-30
FSCB (file system control block)

creating 8-9
fields defined 8-9
modifying for read/write operations 8-11,8-12
usage 8-11
using with I/O macros 8-12

FSCB, macro usage 8-11
FSCBD macro, generating DSECT for FSCB 8-13
FSCLOSE macro, example 8-14
FSERASE macro, usage 8-1S
FSREAD macro, example 8-13
FSWRITE macro, example 8-13
full disk, during editing session A-30
full screen display, with System Product ec:litor S-1

G

GEN operand, of MACLm command
usage 9-12
usage in CMS/DOS 10-17

general registers
convention used in CMS 8-1
displaying in DEBUG environment 13-2
displaying with DISPLAY command· 13-10
modifying during program execution 13-2

GENMMOD command
creating user-written CMS command 9-27
regenerating existing modules 13-12

GETFILE subcommand
creating small files from large one A-30
how to use A-13

global changes, using EDIT subcommands A-II
GLOBAL command

to identify OS macro libraries 9-16
used to identify DOSLms 10-27
used to identify macro libraries 9-12
used to identify macro libraries in CMS/DOS 10-17
used to identify TXTLms 9-23

GLOBAL V command, use with REXX language, System
Product interpreter EXECs 18-4

GLOBAL V filetype, usage in CMS 3-4
GO subcommand, to resume program execution 13-2

X-12 VM/SP CMS User's Guide

H

halting
program execution 2-8
screen status 1-8
System Product interpreter EXECs 18-1
terminal displays 2-8

HDRI tape label 6-23
HELP command

CMS component 19-1
CP component 19-1
DEBUG component 19-1
EDIT component 19-1
EXEC component 19-1
EXEC 2 component 19-1
how to issue 19-1
REXX component 19-1
SQLD component 19-1
XEDIT component 19-1

HELP Facility
commands, displaying 19-1
components 19-1
EXEC statements, displaying 19-1
filetypes 19-12
how it works 19-1
keys, PF and PA2 19-8
messages, displaying 19-1
notational conventions 19-10

HELP file
how to name 19-11
using PFI key 19-5

HELP files
adding 20-1
changing menus 20-2
creating new files 20-3
deleting 20-1
notational conventions 19-10
printing 19-9
sample requests 19-3

HELPCMS filetype, usage in CMS 3-S
HELPCP filetype, usage in CMS 3-5
HELPDEBU filetype, usage in CMS 3-S
HELPEDIT filetype, usage in CMS 3-S
HELPEXC2 filetype, usage in CMS 3-S
HELPEXEC filetype, usage in CMS 3-S
HELPHELP filetype, usage in CMS 3-S
HELPMENU filetype, usage in CMS 3-S
HELPMSG filetype, usage in CMS 3-S
HELPPREF filetype, usage in CMS 3-5
HELPREXX filetype, usage in CMS 3-5
HELPSET filetype, usage in CMS 3-5
HELPSQLD filetype, usage in CMS 3-5
HELPXEDI filetype, usage in CMS 3-5
hexadecimal, conversion in CMS EXEC procedure B-21
III Immediate command 18-1
hold status, placing virtual output devices in during

debugging 13-1
HOLD, operand of SPOOL command 6-2
holding

display on terminal 1-8
spool file to keep them from being processed 6-2

HOLDING, screen status 1-8
HT Immediate command 2-9
HX

DEBUG subcommand 13-3
Immediate command 2-8

effect in CMS subset 2-4
effect on DLBL definitions 10-11
effect on FILEDEF definitions 9-9

I

I/O
device assignments in CMS/DOS 10-7
macros used in CMS programs 8-9

ID card, to submit job to CMS batch facility 12-1
identifying

macro libraries to search 9-12
macro libraries to search, in CMS/DOS 10-17
master catalog, VSAM, in CMS/DOS 11-12
multivolume VSAM files 11-26
multivolume VSAM files in CMS/DOS 11-17
VSAM master catalog 11-21

IEBPTPCH utility program, creating CMS files from tapes
created by 6-26

IEBUPDTE utility program, creating CMS files from tapes
created by 6-26

IEHMOVE utility program, creating CMS files from tapes
created by 6-27

IJSYSCL, defining in CMS/DOS to-to
IJSYSCT

defining 11-21
defining in CMS/DOS 11-11

IJSYSRL, defining in CMS/DOS 10-10
IJSYSSL, defining in CMS/DOS 10-to
IJSYSUC

defining 11-23
defining in CMS/DOS 11-14

IMAGE subcommand, using in edit macros B-64
Immediate commands

creating your own 8-6
entering on display terminal 2-7
using with System Product interpreter programs 18-1

IMPCP operand, of CMS SET command, setting 2-3
IMPEX operand, of CMS SET command, usage 15-2
implied

CP function, SET IMPCP, usage 2-3
EXEC function, SET IMPEX, usage 15-2

IMPORT, access method services function 11-30
importing, VSAM data sets 11-30
INCLUDE

command, entering after LOAD command 9-25
VSE linkage editor control statement, specifying

in 10-26
increasing, virtual machine storage A-29
indenting text 20-7
input and output files, VSAM defining 11-11
input data

left margin while using CMS editor A-19
right margin while using CMS editor A-22
translated to uppercase by CMS editor A-2

input mode
entered after REPLACE subcommand A-13
on display terminal in linemode 5-5
returning to edit mode, in edit macros B-63

input stack, clearing B-44
INPUT subcommand

inserting single line into a file A-13
stacking in EXEC procedure B-43
using in edit macro B-62

INSERT statement 8-21
inserting, lines in a file being edited 5-3
instructions

calculating virtual storage addresses 13-2
tracing 13-8

interrupting
execution of edit macros B-62
program execution 2-7
programs, with breakpoint 13-3

interruptions

CMS macros for handling 8-18
external 13-8
signaling on display terminal 2-7

invoking

IPL

access method services 11-3
CMS editor 5-2
System Product editor 5-1
System Product interpreter EXECs 15-1
VSAPL on display terminal 2-9

entering CMS environment 1-4
loading alternate saved segment 13-17

ISAM access method
CMS restriction 9-5
CMS/DOS restriction 10-5

issuing

J

CMS commands from HELP file 19-1
CP commands from HELP file 19-1
HELP command 19-2

job catalog
using 11-21
using in CMS/DOS 11-11

job control language, equivalent in CMS 9-2
jobname, for job sent to CMS batch facility

specifying 12-2
used to identify spool files 12-7

jobs, for CMS batch facility, submitting 12-1

L

label off processing, tapes 6-14
label processing, general description 6-11
LABELDEF command

description 6-23
in CMS/DOS tape label processing 6-20
in tape processing 6-21
standard labels 6-12
use of 6-23

labels
DOS disks, for VSE/VSAM, determining for

AMSERV 11-12
in CMS E':{EC procedure B-I0
OS VSAM disks, determining for AMSERV 11-21
tape

using VSAM tapes 11-27
using VSAM tapes in CMS/DOS 11-19

writing on CMS disks 1-15
LABOFF (label off) processing 6-14
language statements

in EXEC 2 language 14-2
in REXX language, for System Product interpreter 14-1

large files, splitting into smaller files A-29
LDRTBLS operand, of CMS SET command, usage 13-16
leaving

CMS subset environment 2-4
CMS/DOS environment 2-6
debug environment 2-5
edit environment A-3
input mode 5-4
XEDIT environment 5-1

length, of CMS ready message, changing 1-9
libraries

CMS

Index X-13

CMSLffi 9-16
distributed with CMS system 9-16
DMSSP 9-16
DOSMACRO 9-16
OSMACRO 9-16
OSMACR01 9-16
OSVSAM 9-16
TEXT libraries 9-23
TSOMAC 9-16

DOS
copying modules from 10-12
core image, using 10-29
executing phases from core image 10-28
identifying in CMS/DOS 10-10
procedure, copying procedures 10-13
using directories 10-14
using in CMS/DOS 10-11

DOS/VSE relocatable
link-editing modules from 10-25

DOS/VSE source statement, using in CMS 10-12
macro libraries

See macro libraries, CMS
OS, using in CMS 9-16

LIFO

line

last-in first-out stacking
in CMS EXEC procedure B-41
in edit macros B-61

mode, using editor in 5-5
pointer

See current line pointer
line-number editing A-8
LINEDIT macro, executing CP commands 8-5
LINEMODE subcommand, beginning line-number

editing A-22
lines, deleting at terminal before entering C-1
LINK command

format, in job for CMS batch facility 12-6
linking to other user's disks 1-16

link-editing
modules form DOS relocatable libraries 10-26
programs

in CMS/DOS 10-25
specifying linkage editor control statements in

CMS/DOS 10-25
TEXT files and TXTLffi members 9-23
TEXT files, in CMS/DOS 10-26

Linkage conventions, for programs executing in CMS 8-1
linkage editor

DOS/VSE
invoking in CMS/DOS 10-25
specifying control statements 10-25

maps, using when debugging 13-1
OS, control statements supported by TXTLffi

command 9-23
linking

to other user's disks 1-16
to your own disks 1-16

LISTCA T, access methods services function 11-4
LISTCRA, access methods services function 11-4
LISTDS command

listing DOS files 10-5
listing extents occupied by VSAMfiles 11-8
listing free space extents 11-8
used with OS data sets 9-3

LISTFILE command, used to list your disk files 3-20
listing

edit macros, with $MACROS edit macro B-68
information

about CMS files 3-20

X-14 VM/SP CMS User's Guide

about disks 1-11
about DOS files 10-5
about MACLffi members 9-12
about OS and DOS disks 11-8
about OS and DOS files 11-8
about your terminal C-2
about your virtual machine 7-5
requested 4-4

logical unit assignments in CMS/DOS 10-8
LISTING files

created by AMSERV command
changing filename 11-5
created by assembler and language processors 3-5
printing 11-5

created by assembler, output filemode 9-20
created by ESERV command 10-14

LISTING filetype
created by AMSERV command 11-4
usage in CMS 3-5
usage in CMS/DOS 3-7

LISTING, assembler ddnames, overriding default
definition 9-21

LISnO command, listing device assignments 10-8
literal values, using in CMS EXEC B-21
LKED command

description 9-3
specifying input to 9-30

LKEDIT filetype, usage in CMS 3-5
LOAD command, loading and executing TEXT files 9-22
load map

produced by LOAD and INCLUDE commands 9-25
using when debugging 13-1

LOAD MAP file, created by CMS loader 9-25
loader

CMS
description 9-24
entry point determination 9-25

control statements, summary 9-26
tables

effect of LOAD and INCLUDE commands 9-25
usage 13-16

loader terminate (LDT) loader control statement, usage 9-24
loading

CMS into your virtual machine 1-4
CMS, specifying virtual device address 13-16
core image phases into storage for execution 10-28
programs into storage, specifying storage locations 8-7
TEXT files into storage 9-22
TXTLffi members

dynamically 9-26
into storage 9-23

LOADLffi filetype, usage in CMS 3-5
LOADMID command, to debug module file 13-12
LOCATE subcommand

how to use A-7
using in edit macros B-64

locating
lines in a file being edited A-7

using line-number editing A-8
locking, of terminal keyboard 1-5
logging off VM/SP 1-5
logging on to VM/SP 1-5
logical

character delete symbol C-1
escape symbol C-2
line delete symbol C-1
line editing symbols

defining C-2
overriding C-2
used with CMS editor A-2

line end symbol C-l
operators, used for comparisons in CMS EXEC

procedure B-12
record length of CMS file, overriding editor

defaults A-14
units, assigning in CMS/DOS 10-7

LOGOFF command 1-4
LOGON command, contacting VM/SP 1-3
LONG subcommand, when to use A-26
loop

during program execution, debugging 13-5
in CMS EXEC procedure

using &LOOP control statement B-31
using counters B-30

lowercase letters
suppressing translation to uppercase A-16
translated to uppercase by CMS editor A-2

LRECL option

M

of COPYFILE command, truncating records in
file A-14

of EDIT command, when to use A-14
of FILEDEF command, when to specify 9-8

MACLm
command

usage 9-12
usage in CMS/DOS 10-18

files
adding MACRO files created by ESERV

program 10-13
moving to other files 9-15
querying 9-12
querying in CMS/DOS 10-16

filetype, usage in CMS 3-5
MACRO

files
adding to MACLm 9-13
adding to MACLm, in CMS/DOS 10-18
created by ESERV command 10-13

filetype
usage in CMS 3-5
usage in CMS/DOS 3-7

macro libraries
CMS

adding to 9-13
creating 9-13
deleting 9~ 14
display information about members in 9-15
distributed with CMS system 9-16
replacing members of 9-14

OS, identifying for use in CMS 9-16
using in CMS/DOS 10-16
VSE assembler language, restriction on using in

CMS/DOS 10-23
macros

OS, supported in CMS 9-19
VSE assembler language macros supported in

CMS 10-21
MAINHIGH 10-30
map

filetype
created by DOSLKED command 10-27
created by DSERV command 10-15
created by MACLm command 9-15, 10-19
usage in CMS 3-5
usage in CMS/DOS 3-7

operand, o(MACLm command 9-15,10-19

option of VSE ACTION control statement, effect in
CMS/DOS 10-27

maps
created by DOS/VSE linkage editor 10-27
of CMS virtual storage 13-14

margins
setting left margin for input with CMS editor A-19
setting right margin for input with CMS editor A-22

master catalogs
VSAM

defining 11-21
defining in CMS/DOS 11-12
sharing 11-6

master file directory 3-16
MEMBER option

CMS commands having this option 10-19
of FILEDEF command 9-9
to copy member of OS partitioned data set with

FILEDEF 9-10
MEMO filetype 3-9

for documentation 3-9
menus

changing 20-2
CMS HELP 19-6
creating 20-2
example, of creation 20-2

messages
controlling whether you receive them 1-1
from CMS batch facility 12-4
sending, to other virtual machine users 7-5
when display screen is full 1-8

minidisks
See also disks
definition 1
restriction on using EXPORT/IMPORT with

VSAM 11-30
transporting to OS system after using with CMS
'VSAM 11-8
using with VSAM data sets 11-8

mode
edit and input 1-13
setting with CP TERMINAL command 2-7
switching 2-1

modifying
CMS EXECs B-6
CMS files, commands to use 4-12
FSCB 8-11 .
registers during program execution 13-2

MODULE
files

creating 9-27
debugging 13-12
executing from programs 8-7
generating to execute in transient program area 8-8
modifying 13 .. 12

filetype, usage in' cMS 3-6
modules, DOS/VSE relocatable, copying into CMS

files 10-12
MORE ... status, on display screen 1-8
MOVEFILE command

copying CMS files from tapes created by 6-8
copying tape files 6-26
description 6-23
extracting members of MACLm 9-15, 10-19
reading files from virtual card reader 6-6
use of 6-23
used with OS data sets 9-3

moving
CMS files, commands to use 4-13

current line pointer in CMS edit environment A-5
lines in a file being edited (CMS editor) A-13

MUL T option, of DLBL command 11-20
in CMS/DOS 11-11

multiple
extents for VSAM files

specifying 11-25
specifying in CMS/DOS 11-16

output devices, restrictions in eMS/DOS 10-9
updates, with CTL option of XEDIT command 8-28
updates, with UPDATE command 8-25
variable symbols in token, examples B-18

multivolume VSAM extents
specifying 11-25
specifying in CMS/DOS 11-16

N

NAME, OS linkage editor control statement, supported by
TXTLIB command 9-24

NAMES filetype, usage in CMS 3-6
naming

CMS files 3-1
conventions, for HELP files 19-11
user commands 3-17

nesting
&IF statements in a CMS EXEC procedure B-27
CMS EXEC procedures B-33

NETLOG filetype, use in CMS 3-6
NL processing for tapes

See no label· processing
nnnnn subcommand, examples A-22
no label processing 6-11, 6-13
NO CLEAR option, of XEDIT command, using in EXEC

procedure 5-6
nonrelocatable modules, creating 9-27
nonshared copy

of CMS 13-16
of saved system, obtained during debugging 13-16

nonstandard label processing, tapes 6-14
nonstandard label routine, writing 6-14
nonstandard labelled tapes, defining 6-19
NOPROF option, of ACCESS command, suppress execution

of PROFILE EXEC 16-1
NOT ACCEPTED status, on display screen 1-9
NOTEBOOK filetype, use in CMS 3-6
NSL (nonstandard label) processing 6-14
nucleus-resident commands 3-19
null

line
at top of file A-6
entering to determine environment 2-2
in CMS EXEC procedure B-18
input data from terminal 1-1
stacking in CMS EXEC procedure B-44
testing for in CMS EXEC procedure B-35
to resume program execution after attention

interruption 2-8
to return to edit mode from input mode A-2

variables in CMS EXEC procedure B-9

X-16 VM/SP CMS User's Guide

o
object files

created by assembler and language processors 3-7
loading into storage 9-21

offsetting text 20-8
OPEN macros, OS simulation 6-11, 9-8, 9-19
opening, CMS files 8-14
options, of FILEDEF command, specifying 9-7
ORDER command, selecting files for processing 6-5
ORIGIN subcommand, how to use 13-4
origin, for debug environment, setting 13-4
OS

access methods supported in CMS 9-3
data sets

copying into CMS files 9-9
restrictions on reading, in CMS 9-5
using in eMS 9-2

disks
compatibility with DOS disks 11-6

linkage editor control statements, read by TXTLffi
command 9-23

macros, supported in eMS 9-19
partitioned data sets

See partitioned data sets
program development, commands to use 4-15
simulated data sets 9-4
simulation, end-of-tape processing 6-24
simulation, in CMS 9-1
using in CMS 9-2
utility programs, creating CMS files from tapes created

by 6-26
OSMACRO MAC LIB 9-16, 10-20
OSMACROI MACLIB 9-16, 10-20
OSRUN command 9-29
output

file, produced by ASSEMBLE command 10-23
from CMS batch facility 12-6
from virtual console, spooling 1-18
records, sequencing 8-21

output stack, clearing B-44
OVERLAY subcommand

how to use A-II
more than one line at a time A-12
using with edit macros B-64

overlaying
character strings A-II
using $MARK edit macro A-20

overriding, logical record length of file being edited A-14

p

parameter lists
detecting absence of 8-4
EXEC 2 8-4
extended 8-2
passing with START command 8-4
setting up tokenized to execute CMS command 8-2
tokenized 8-2
untokenized 8-2
used by CMS routines 8-4
using FSCB 8-16

parent disk, of read-only extension 3-10
parentheses, scanned by CMS EXEC interpreter B-18
partition size, specifying for execution in CMS/DOS 10-30
partitioned data sets

copying into CMS files 9-10
specifying members with FILEDEF command 9-10

passing
arguments

to CMS EXEC procedure B-7
to nested CMS EXEC procedure B-33

control, within CMS EXEC procedure B-28
global variables, between EXECs, with

GLOBALV 18-4
password suppression, on command line 1-16
passwords

for VSAM catalogs 11-24
for VSAM catalogs, in CMS/DOS 11-15
for your virtual machine 1-3
supplying on LINK command line 1-16

PAl key, to enter CP environment 1-8
PA2 key, in HELP 19-8
PDS option, of MOVEFILE command, to copy OS

partitioned data sets 9-10
periods, used to concatenate CMS EXEC special

variables B-9
PERM option, of FILEDEF command, when to specify 9-8
PF keys

See program function (PF) key
PF1 key, used in HELP file 19-5
phases, CMS/DOS core image, writing into DOSLIBs 10-27
positioning, current line pointer A-6

using $POINT edit macro B-70
preferred auliliary files 8-30
preferred level updating 8-30
preparing jobs, for CMS batch facility 12-5
PRESERVE subcommand

saving EDIT subcommand settings A-27
using in edit macros B-62

preserving, editor settings A-27
PRINT

access methods services function, output 11-4
command, printing CMS files 3-8

printer files
produced by job running in batch virtual machine 12-5
querying status of 6-4
spooling 6-4

printing
access method services listings 11-5
CMS files 3-8
multiple copies 6-2
trace information on virtual printer 13-9

PRINTL macro, usage 8-17
privilege classes, for CP commands E-1
PROC filetype 3-7

usage in CMS/DOS 10-3
procedures, DOS/VSE, copying into CMS files 10-13
processing, tapes

BLP 6-14
LABOFF 6-14
NL 6-13
NSL 6-14

PROFILE EXEC
for CMS/DOS VSAM user 11-12
OS VSAM user 11-21
sample, using REXX language 16-1

program
abend, message 13-1
breakpoints 13-3
check, using CP to debug 13-11
debugging 13-1
dumps, obtaining 13-12
execution

entry point determination 9-26
interrupting 13-3
resuming, with BEGIN command 13-12
tracing, with CP PER 13-6

input and output files, identifying 9-5
interruption

address stops 13-8
ADSTOPs, with CP PER 13-7

libraries 9-11
linkage 8-1
listings, used when debugging 13-1
loops, debugging 13-5
monitoring evens during execution, CP PER 13-6

program development
commands to use for 4-15
OS programs
using CMS, commands to use 4-14
VSE programs

commands to use for 4-16
program function (PF) key

? 19-8
BACKWARD 19-8
BACKWARD 1/2 19-8
CLOCA TE 19-8
CURSOR 19-9
FORWARD 19-8
FORWARD 1/2 19-9
HELP 19-8
MENU 19-8
PF KEYS 19-8
PRINT 19-9
QUIT 19-8
RETURN 19-8
TOP 19-8

program function (PF) keys
setting 1-6

COPY function 1-18
in PROFILE EXEC 16-1
to retrieve previous line entered 1-6

using 1-6
using in FILELIST 3-21
using to send notes 7-8
using when composing a note 7-7
using when receiving files when in RDRLIST 7-11

program stack
See also console stack
example 17-2
using AnN function 17-2

program status word
See PSW (program status word)

programmer logical units, assigning in CMS/DOS 10-7
programs

exchanging data between, through the stack 17-1
written in REXX language, for System Product

interpreter 14-1
prompting

during VSEVSAM command 11-34
for line numbers, during line-number editing A-22
messages, displaying in CMS EXEC procedure B-27
when sorting a list B-5

protecting, files from being accessed 3-13
PSERV command, usage 10-13
PSW (program status word)

displaying
in debug environment 13-5
while program loops 13-5
with DISPLAY command 13-11

modifying wait bit 13-11
PSW operand, of DISPLAY command 13-11
PUNCH

command
example 6-6
punching jobs to batch virtual machine 12-2
using with &PUNCH control statement B-48

Index X-17

ESERV control statement, executing in
CMS/DOS 10-13

punch files, produced by job running in batch virtual
machine 12-7

PUNCHC macro, usage 8-17
punching

CMS files 6-6
jobs to batch virtual machine 12-2
lines in CMS E'<EC procedure B-13
members of MACLffis

PURGE command, deleting spool files 6-4
purging batch jobs 12-7

Q

QSAM access method, CMS support 9-4
QUERY

command (CMS)
display search order of disks 3-10
how much space is on a disk 3-15

command (CP)
display color and extended highlight values 1-9
query status of CP SET MSG function 1-1

QUIT subcommand, terminating an edit session 5-1

R

re-executing EDIT subcommands A-27
READ control card 6-5
read-only extensions, using 3-11
read/write

pointer, positioning 8-15
status of disks

display~ng 1-17
in VM/SP directory entry 1-16

read, to virtual console, definition 2-7
READCARD command

examples 6-5
restriction in CMS batch facility 12-6
used to assign filemode numbers 3-12
used with &PUNCH control statement B-47

READER operand
of ASSGN command, restriction in job for CMS batch

facility 12-6
of FILEDEF command, restriction in job for CMS batch

facility 12-6
reading

arguments from terminal during CMS EXEC
processing B-35

cards from your virtual card reader 6-5
CMS commands

from console stack 17-1
from terminal during CMS EXEC processing B-36

CMS files
from console stack 17-1
with FSREAD macro 8-12

DOS files in CMS, restrictions on 10-5
from terminal

in CMS EXEC procedure B-12
lines from from console stack, in EXEC

procedure 17-1
RDTERM macro 8-17

real card decks into your virtual machine 6-5
specific records in CMS file 8-12
variable symbols from terminal during CMS EXEC

proceSsing B-41
ready message

X-18 VM/SP CMS User's Guide

controlling how it is displayed 1-9
CPU times displayed 8-2
displaying return code from CMS EXEC

procedure B-34
not displayed after #CP function is used in CMS 2-3

RECFM option, of FILEDEF command, when to
specify 9-8

record format
of CMS file, changing A-15
specifying fir program input and output files 9-8
specifying for DOS files 10-6

record length
creating long records with CMS editor A-15
of CMS file

changing A-16
default values set by CMS editor A-13
relationship to file size A-15

recursion level, of CMS EXEC, testing with &GLOBAL
special variable B-33

register 15
checking contents after program execution 9-28

in CMS/DOS 10-32
contents after CMS command execution 8-2
testing contents in CMS EXEC procedure B-51

registers
See general registers

relative record number, specified in FSCB 8-10
RELEASE command

updating master file directory 3-16
used with OS disks 9-3

releasing
disks 1-17
read-only extensions 3-11

relocatable
modules, link-editing in CMS/DOS 10-26
object files, loading into storage for execution 9-22

Remote Spooling Communications Subsystem (RSCS)
networking 4-5

remote terminals, using an editor 5-5
RENAME command

changing filemode numbers only 3-23
renaming CMS files 3-23

renaming, CMS files 3-23
RENUM subcommand, usage A-23
renumbering, records in file, while line-number editing A-23
reordering batch jobs 12-7
REP operand, of MACLIB command 9-14

in CMS/DOS 10-18
REPEAT subcommand, used with OVERLAY

subcommand A-12
REPLACE statement 8-22
REPLACE subcommand

how to use A-12
using in edit macros B-63

replacing
lines in file being edited A-12
lines, when line-number editing A-32
members in macro library, example in CMS/DOS 10-18

REPRO, access method services function 11-30
resolving, unresolved references 9-24
responding

to prompting messages from AMSERV, in eMS
EXEC 11-32

responses
from CMS commands 1-9

suppressing display in CMS EXEC procedure B-38
from VM/SP 1-4

restarting batch jobs 12-7
RESTORE subcommand

usage A-27

usage in edit macros B-62
restoring

editor settings A-27
restrictions

on commands used in CMS batch facility 12-5
on ddnames in OS VSAM programs 11-19
on executing DL/I programs in CMS/DOS 10-4
on executing OS programs in CMS 9-22
on number of lines that can be stacked in edit

macro B-62
on programs executing in transient area 8-8
on reading DOS files in CMS 10-5
on using DOS macro libraries in CMS/OOS 10-15
on using minidisks with VSAM data sets 11-8
on using OS programs in CMS/DOS 10-2

resume
after an attention interruption 2-8
program execution

after a program check 13-2
after regaining control following a disconnect 1-5

terminal displays 2-8
RETRIEVE function, display terminals 1-6
retrieving previously entered data 1-6
RETURN

CMS subset command, to leave subset 2-4
DEBUG subcommand, before starting program

execution 13-3
return code

-2 B-62
-3 B-49
displayed in ready message 8-2
from access method services 11-4
from CMS commands

displaying during CMS EXEC processing B-34
specifying error address following SVC 202 8-5

from CMS EXEC procedure B-34
in CMS ready message 1-10
passed by register 15 8-2
1 B-49

REUSE subcommand
after LOCATE or FIND subcommand A-7
usage A-28

RSERV command, examples 10-12
RT Immediate command 2-8

executing in CMS EXEC procedure B-14
RUN command, specifying arguments 8-4
RUNNING status, on display screen 1-8

s
SAM (sequential access method) files, reading in

CMS/DOS 10-5
sample terminal sessions· F-l
SAVE subcommand

changing file identifier 5-2
writing file onto disk 5-1

scanning
CMS command lines 8-2
lines in CMS EXEC procedure B-7

screen
example of 3270 screen display 1-19
status

SCRIPT

CP READ 1-7
HOLDING 1-8
MORE ... 1-8
NOT ACCEPTED 1-9
RUNNING 1-8
VMREAD 1-7

command, restriction on executing in CMS/DOS 10-2
files 3-9
filetype, usage in CMS 3-9

SCROLL subcommand, how to use A-32
SDATE synonym, to sort FILELIST 3-21
search order

for CMS commands
considerations when naming CMS EXEC

procedure B-4
displaying 3-15
summary 3-17

for CMS disks 3-10
for executable phases in CMS/DOS 10-28
used by ASSEMBLE command 10-24
used by DOSLKED command 10-25

searching
disks for CMS files

See disk determination
for label in CMS EXEC procedure B-28
for line in file being edited A-7
only particular columns of file being edited A-9
read-only extensions 3-10

segment
sending

files, to other virtual machine users
from SENDFILE menu 7-9
using DISK DUMP command 6-6
using SENDFILE command 7-8

messages, to other virtual machine users
using CP MESSAGE command 7-5
using TELL command 7-5

notes, to other virtual machine users
using SENDFILE command 7-8

SENTRIES command, used to create buffers 17-2
sequence numbers

specifying identifier A-20
updating 8-22
using XEDIT SERIAL subcommand 8-20

SE0UENCE statement 8-21
sequential access method (SAM) files, reading in

CMS/DOS 10-5
serial numbers

changing verification setting to display A-9
in file being edited A-21

SERIAL subcommand, example A-21
serializing

records in file A-21
while line-number editing A-23

SET command (CMS)
controlling ready message display 1-9
controlling whether you receive messages 1-1
invalid forms in job for CMS batch facility 12-6
operands invalid in job for CMS batch facility 12-6
set tracing on or off, for System Product interpreter

EXECs 18-1
setting implied CP function 2-3
setting implied EXEC function 15-2
setting program function keys 1-6
using to enter or exit DOS environment 10-2

SETSSI, OS linkage editor control statement, supported by
TXTLm command 9-24

setting
defaults for SENDFILE command, example 7-8
entry point for program execution 9-26
length of ready message 1-9
limits on system resources during batch jobs 12-4
program function keys 1-6
screen colors and highlighting features 1-9

sharing

Index X-19

CMS system 13-16
data and master catalog, in CMS VSAM 11-6
virtual disks 1-16

SHORT subcommand, when to use A-26
simulated data sets

size

filemode number of 4 3-14
format 9-4

of CMS file, relationship to record length A-14
of programs that execute in transient area,

restriction 8-8
of virtual storage in your virtual machine 13-15

skipping lines, in CMS EXEC procedure B-ll
SLEEP command

using on display terminals 1-8
SLREC synonym, to sort FILELIST 3-21
SMODE synonym, to sort FILELIST 3-21
SMSG command (CP) 7-6
SNAME synonym, to sort FILELIST 3-21
SORT command, specifying filemode numbers 3-3
sorting

CMS disk files 1-11
CMSEXEC B-5
directories of DOS/VSE private libraries 10-14
files in FILELIST 3-21

source file, using COpy file command 8-18
source files

addding comments 8-22
deleting records 8-21
inserting records 8-21
replacing records 8-22
sample, using UPDATE command 8-22
sequence numbers 8-20
updating, with XEDIT UPDATE option 8-19

spacing between lines of text 20-10
special characters

CMS editor handling A-I0
in filenames and filetypes 3-1
using to determine if APL is on 2-11
3270 Text feature 2-11

special messages, controlling whether you receive them 7-6
special variables, CMS EXEC, summary B-17
specifying

device type, for FILEDEF command 9-6
filemode numbers, on DLBL and FILEDEF

commands 3-15
which record to read or write 8-12

splitting, CMS files into smaller files A-29
SPOOL command

changing characteristics of unit record devices 6-1
spooling console output 1-18
used to combine multiple spool files 6-3

spool files
controlling in job for CMS batch facility 12-7
determining status of 6-1
produced by CMS batch facility, controlling 12-7

spooling
basic description 6-1
console output 1-18
multiple copies 6-2

SRECF synonym, to sort FILELIST 3-21
SSERV command, examples 10-12
SSIZE synonym, to sort FILELIST 3-21
STACK subcommand, using in edit macros B-62
stacking

CMS commands in console stack 17-1
command

after LOAD command 9-22
used with FETCH command 10-28

command lines, with # (logical line end symbol) 17-1

X-20 VM/SP CMS User's Guide

commands, after attention interruption 17-1
EDIT sub commands

in edit macros B-59
in EXEC procedure B-43
with REUSE subcommand A-28

first-in first-out (FIFO) in CMS EXEC procedure B-41
Immediate commands, in CMS EXEC procedure B-38
last-in first-out (LIFO) in CMS EXEC procedure B-41
lines in console stack, in CMS EXEC procedure B-14
lines, in edit macro, restriction B-62
null lines

after attention interruption 2-8
at your terminal 1-1
in CMS EXEC procedure B-44

option
of FETCH command 10-28
of LOAD command 9-22

responses in EXEC procedure 17-1
DLBL command 10-32
"FILEDEF command 9-28
to CMS commands B-14

XEDIT subcommands to be read within an EXEC 17-1
standard label processing, CMS/DOS 6-19
standard labels, OS simulation 6-11
START
starting, program execution in CMS 9-22
STATE command, used with OS data sets 9-3
storage available in your virtual machine, calculated by

CMS 10-30
STORE

CP command, using to change program status word
(PSW) 13-6

subcommand, changing storage locations 13-4
STYPE synonym, to sort FILELIST 3-21
suballocated VSAM cluster, defining 11-29
submitting, jobs to CMS batch facility 12-1

non-CMS users 12-11
substitution, variable symbols in CMS EXEC

procedure B-19
summary

commands for system programmers D-7
of CMS commands D-l
of CMS EXEC built-in functions B-9
of CMS EXEC control statements B-15
of CMS EXEC language facilities B-6
of CMS EXEC special variables B-17
of CMS/DOS commands 10-3
of CP command privilege classes E-l
of CP commands E-2
of DEBUG subcommands 13-4
of EDIT subcommands A-31
of Immediate commands D-2
of VSE assembler language macros supported 10-21
VSE/VSAM assembler language macros

supported 11-33
suppressing

long form of ?EDIT message A-26
verification of changes made by CMS editor A-26

suppression, of passwords on the command line 1-16
SVC instructions

tracing with CP TRACE command 13-9
tracing with SVCTRACE command 13-10

SVC 202, used to call CMS command 8-5
SVCTRACE command, usage 13-10
symbols

debug
defining 13-4
using with DEBUG subcommands 13-4

logical line editing C-l
used for comparison in CMS EXEC procedure B-12

variable, in CMS EXEC procedure
See variable symbols

SYNONYM
command, invoking synonym tables 3-23
filetype, usage in CMS 3-6
used to define synonyms for CMS and user-written

commands 3-23
synonyms, used to sort FILELIST

SDATE 3-22
SLREC 3-22
SMODE 3-22
SNAME 3-22
SRECF 3-22
SSIZE 3-22
STYPE 3-22

SYSCAT, assigning in CMS/DOS 11-11
SYSCLB

assigning in CMS/DOS 10-8
unassigning 10-29

SYSIN
assigning in CMS/DOS 10-8
input for ESERV command 10-13

SYSIPT, assigning in CMS/DOS 10-8
SYSLm, ddname used to identify OS macro libraries 9-17
SYSLOG, assigning in CMS/DOS 10-8
SYSLST

assigning in CMS/DOS 10-8
output from ESERV program 10-14

SYSPCH
assigning in CMS/DOS 10-8
output from ESERV program 10-14

SYSRDR, assigning in CMS/DOS 10-8
SYSRLB, assigning in CMS/DOS 10-8
SYSSLB, assigning in CMS/DOS 10-8
system disk, files available 3-13
system logical units 10-8
System Product Editor

example, of using 5-3
full screen display 5-3
invoking 5-2
linemode on display terminals 5-5

System Product Interpreter
basic description 14-1
invoking 15-1
REXX language, interpreted by 14-1
sample EXECs 15-3
writing EXECs for the 15-1

SYSUTx filetype 3-8
SYSUTI filetype 3-8
SYSUT2 filetype 3-8
SYSUT3 filetype 3-8
SYSUT4 filetype 3-8
SYSxxx

option, of DLBL command 10-10
programmer logical units, assigning 10-7

SYSOOx filetype 3-8
SYSOOI filetype 3-8
SYS002 filetype 3-8
SYS003 filetype 3-8
SYSOO4 filetype 3-8
SYS005 filetype 3-8
SYS006 filetype 3-8

T

tab
characters

entering in file being edited A-16
using in edit macros B-64

settings, used by editor A-17
TABSET subcommand, using in edit macros B-64
tape

bypass label, description 6-14
nonlabeled, description 6-13
nonstandard label, description 6-14

TAPE command
creating CMS files from tapes created by 6-7
sample terminal display 6-8
using 6-8

tape file
DCB address 6-15
FCBSECT address 6-15

tape files, in CMS 6-7
tape handling options, specifying 6-27
tape label

by CMS commands 6-21
EOT 6-24
EOV 6-24
LABELDEF command 6-23
MOVEFILE command 6-26
under CMS/DOS 6-18

DTFMT macro 6-18
under OS simulation 6-11
under OS/VS simulation 6-16

tape label, processing, mM standard 6-12
tape labels

in CMS 6-11
limitations 6-11

TAPECTL macro, used in tape label process 6-21
TAPEMAC command 6-22
tapes

considerations for CMS/DOS 10-7
density, when to specify 6-27
for AMSERV, example 11-27
label processing 6-11
labels

in CMS 6-11
in CMS/DOS 6-18
in OS simulation 6-11
reading 11-27
reading in CMS/DOS 11-19

optional handling 6-27
special handling 6-27
used for AMSERV input and output 11-17
virtual addresses 6-7

TAPESL macro, description 6-21
TAPPDS command 6-22

copying files from tapes 6-26
creating CMS files from tapes created by 6-8

TCLOSE command, in tape label processing 6-18
TE Immediate command 18-1
temporary disks, using for VSAM data sets 11-9
TERMINAL command (CP), used to set logical line editing

symbols C-2
terminal input buffer 17-1
terminals

characteristics 1-7
disconnecting 1-4
display

See display terminals
input buffer

See console stack

Index X-21

macros for communication 8-17
mode, setting 2-7
requesting information about 4-4
sample sessions F-l

terminology
CMS/DOS 10-1
OS 9-2

terms, OS, equivalents in CMS 9-2
testing

arguments passed to CMS EXEC procedure B-7
CMS EXEC procedure, using CMS subset B-57
for null line entered in CMS EXEC procedure B-35
return codes from CMS commands, in EXEC

procedures B-50
variable symbols, using &IF control statement B-27

TEXT
assembler output ddanme, overriding default

definition 9-21
files

created by assembler language processors 3-7
link-editing in CMS/DOS 10-26
loading into storage 9-23

filetype
usage in CMS 3-6
usage in CMS/DOS 3-7

text feature, for 3270 terminals 2-11
time information, displaying during CMS EXEC

processing B-14
TO operand, of SPOOL command 6-3
TOF, token stacked when edit macro executed at top of

file B-61
TOF: message A-6
tokens

description B-7, B-18
parameter lists without tokens 8-5
with multiple variable symbols B-18

top of file
executing edit macros B-61
indication-in file being edited A-6

TOP subcommand, moving current line pointer to top of
file A-32

TRACE command (CP), usage 13-8
tracing

controlling trace 13-9
output, printing 13-9
program execution 13-6

tracks
entering extent information in terms of 11-20
number per cylinder on disk devices 11-20

TRANSFER command, moving reader files 6-4
transferring

control in CMS EXEC procedure, &ERROR control
statement B-ll

control in CMS EXEC, with &GOTO control
statement B-28

data files 6-4
transient area

CMS commands that execute in 3-19
creating modules to execute in 8-8
location in virtual storage 8-8
restrictions on modules executing in 8-8

translating output characters 20-11
translating, virtual storage to EBCDIC 13-10
transporting VSAM data sets 11-8
TRUNC

option of COPYFILE command, used to convert record
formats A-16

subcommand, setting right margin for input with
editor A-19

truncating

X-22 VM/SP CMS User's Guide

data while changing lines with editor A-IS
input data while using CMS editor A-19
trailing blanks from fixed-length records A-16
words in CMS EXEC procedure B-6

truncation settings, used by CMS editor A-13
TS Immediate command 18-1
TSOMAC MACLm 9-16,10-20
TXTLm

command

files

OS linkage editor control statements
supported 9-23

usage 9-23

assigning entry point names 9-24
manipulating, 9-23

filetype, usage in CMS 3-6
members, assigning names for 9-24

TYPE
command, displaying CMS files 1-13
issued from an EXEC B-37
subcommand, effect on current line pointer A-5

type call, in tape label processing 6-16
TYPEWRITER subcommand, using to edit in line mode 5-5

u
unassigning logical unit assignments in CMS/DOS 10-8
underscore

characters in file being edited A-18
highlighting feature, controlling with CP SCREEN

command 1-9
in filename and filetype 3-1
using on OVERLAY subcommand A-II

unique clusters, defining 11-29
unit record, devices 6-1
unlabelled tapes, defining 6-19
unresolved references, how CMS loader resolves 9-24
UPDATE

control statement usage 8-21
filetype

updating

creating UPDATE files 8-19
usage in CMS 3-6

CMS file directories 3-16
source file, multiple updates with CTL option of

XEDIT 8-28
source programs, with UPDATE command 8-18

UPDLOG filetype, usage in CMS 3-6
UPDTxxx filetype, usage in CMS 3-6
UPSI

byte, setting in CMS/DOS 10-31
operand, of CMS SET command, example 10-31

user catalog, VSAM 11-22
in CMS/DOS 11-13

user file directory 3-16
user program area 13-14

commands that execute in 3-19
executing programs and CMS commands 8-8

user-written
commands, creating 9-27

userid
for CMS batch virtual machine 12-1
for your virtual machine 1-3
specifying for output spool files 6-3

using CMS macros, examples 8-9
using PFl, PF3 and PF4, in HELP 19-10
using XEDIT subcommand, in HELP 19-7

v
variable symbols

compound B-20
examples of substitution B-19
how scanned B-18
in CMS EXEC procedure

comparing B-12
description B-7
used as counters B-30

reading values from terminal B-36
stacking in edit macros B-61

variable-length EXEC files, considerations for writing edit
macros B-63

V ARS operand, of &READ control statement B-35
verification setting

changing in edit macros B-62
columns used by CMS editor A-9

VERIFY subcommand
canceling editor displays A-8
how to use A-9
using in edit macros B-62

verifying, existence of another file, in edit macro B-60
virtual addresses

for disks 1-11
for tapes 6-7
for unit record devices 6-1

virtual disks
See also DISK command
definition 1-14

Virtual Machine/System Product (VM/SP)
basic description 1-1
command summaries 0-1
components of 1-1
environments 2-1

virtual machines
definition 1-1
size of 13-15

virtual storage
addresses, calculating 13-2
CMS utilization 13-14
displaying 13-10
examining in debug environment 13-2
how CMS uses 13-14
increasing size 13-15
overlaying during program execution 8-8
requesting information about 4-4
specifying locations for program execution 8-8
used by editor, what to do when it is full A-28

VM READ status, on display screen 1-7
VM/SP

See Virtual Machine/System Product (VM/SP)
VM/SP System Product editor

See System Product Editor
VM/SP System Product interpreter

See System Product Interpreter
vm/370 online 1-3
VMF ASM EXEC procedure 8-31
VMFDOS command 10-6
VOLID parameter, FILEDEF command 6-12
VSAM

access method, CMS support 9-3
catalogs

deleting 11-30
passwords 11-24

passwords in CMS/DOS 11-15
using in CMS/DOS 11-11
verifying structure of, with CATCHECK

command 11-15
clusters

defining 11-29
deleting 11-30
unique 11-29

data sets, manipulating with AMSERV command 11-1
files

allocating space for 11-15
identifying multivolume 11-26
identifying multivolume, in CMS/DOS 11-17
realtionship to CMS files 3-1

input and output files
defining 11-19
defining in CMS/DOS 11-11

master catalog
defining 11-21
defining in CMS/DOS 11-12
identifying 11-21
identifying before executing programs 11-2
identifying in CMS/DOS 11-12
sharing 11-6

multivolume extents
specifying 11-25
specifying in CMS/DOS 11-16

option
of DLBL command 11-20
of DLBL command, in CMS/DOS 11-11

programs, compiling and executing in CMS 11-1
user catalogs

defining 11-22
defining in CMS/DOS 11-13

using in CMS 11-1
VSAPL program, invoking 2-10
VSE

.assembler language macros supported in CMS 10-21
differences between CMS/DOS tape label

processing 6-19
system residence volume, using in CMS/DOS to-I
TLBL card, in tape label processing 6-19

VSEVSAM command 11-34

w
wait bit, in program, new PSW, modifying 13-11
WAITT macro, usage 8-17
writing

CMS files
in CMS EXEC procedures B-47
with FSWRITE macro 8-13

CMS files onto disk, disk determination 3-12
edit macros B-59
error messages in CMS EXEC procedure B-55
labels on CMS disks 1-15
lines to terminal 8-17
specific records in CMS file 8-13

writing CMS files onto disk, how the CMS editor selects
disk A-3

WRTERM macro, examples 8-17
WVOLI function, in tape command processing 6-22

Index X-23

x
x

DEBUG subcommand, example 13-2
Edit subcommand, usage A-27

XEDIT

y

command, invoking System Product editor 5-2
CTL option, to create multiple updates to source

file 8-28
example 5-3
LOCATE subcommand 19-7
subcommands, invoking 1-2

Y subcommand, usage A-27

z
ZAP filetype, usage in CMS 3-6
zone setting

columns used by CMS editor A-9
increasing A-19

ZONE subcommand
setting truncation columns for CHANGE

subcommand A-19

X-24 VM/SP CMS User's Guide

specifying columns for CMS editor search A-9

1

19E virtual disk address, accessed as Y -disk 3-9
190 virtual disk address, accessed as S-disk 3-9
191 virtual disk address, accessed as A-disk 3-2
192 virtual disk address, accesses as D-disk 3-9

3

3270 screen display, example 1-19
3270 terminals

See display terminals

SC19-6210-2

--- ------ --------- - ---- - - ----------_.-
®

< s:
"'en
""0
("')

s:
en
c
en
(1) ..,
en'
G")
c:
Ci
(1)

en
("')
-'
(0
I

0)

'" -'
o
I

'"

.e
Q

Z

Virtual Machine/System Product
CMS User's Guide
Order No. SC19-6210-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC19-6202-2

Reader's Comment Form

Fold and Tape Please Do Not Staple

"'"'
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED
INTHE

UNITED STATES

< s:
........
en
'"'tJ
(')

s:
en
c
en
(l)
.,~

en
G')
c:
~
(l) -~
(i)

Z
~
en w
....... o
.........
~
W o o
I

W
~

... C

Fold Fold

If you would like a reply , please print:

YourlVame ___ __

Company lVame __________________________ Department ______ _

Street Address __________________________ _
aty ____________________ _

State _________________ Zip Code _________ _

------- IBM Branch Office serving you _____________________ _ - - ---- ---- - ---- - - ----------_.-
@

en
(')
~

to
I

0')
N
.....J.

o
I

N

.s
c: 0
CD_

E tn
.~:c
:::1-

if"j
0) tn
.5 0
1::
Q CI)
tn CL.
:=,:g e-g
"'C E .e E
ca ::::s

E en
Q ...
... CI)
:::I.e
cat)

:2 0
3: CI)

E :.e
:E ~ e U)
CL. CI)

CD S
tn u)
:::I u)

B e
c: CL.
ca CI)
u u)
tn :::I
CD CI)

is..~
.f!J2
Cf.) c...

CD ...
Q

Z

Virtual Machine/System Product
CMS User's Guide
Order No. SC19-6210-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

o
o
o

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC19-6202-2

Reader's Comment Form

Fold and Tape Please Do Not Staple Fold and Tape ..

Fold

III
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department G 60
P. O. Box 6
Endicott, New York 13760

NO POSTAGE
NECESSARY
IF MAILED
INTHE

UNITED STATES

Fold

If you would like a reply, please print:

YourName __ __

Company Name ___________________________ Department __________ _
SueetAddress __________________________________ ___
Ory ______________________________________ __

State __ ---,-__________ Zip Code _____ _

--- ----- IBM Branch Office serving you ___________________ _ - - - ---- ---- - ---- - -----------_.-
®

o
~
~
." o
Ci
» o
:s
G

r
3' •

< s:
........
en
-0
(')

s:
en
c
en
CD
..,~

en
G)
c:
0.:
CD -~
CD
z
?
en w
"-I o

..........
.,J::.
w
8
I

W
~

en
(')
:.....
CD
I

0)
N
~

o
I

N

SC19-6210-2

-------- - -------.. -~-- - - ------
-~-,-®

SC19-6210-2

< s: -....
CJ)
""0

(J

s:
CJ)

c
CJ)

CD
~.

CJ)

G')
c:
Ci
CD

" Co
Z
o
CJ)
W
--...J
o -....
~ w
o o
I

W
~

""0
~.
::J
.-+
CD
Co

::J

C
CJ)

~

CJ)
(J

CD
I

0')
I'V
o
I

I'V

-------------~--~--------------. .. =

SC19-6210-2

